ebook img

ANP-10311NP, Revision 0 PDF

725 Pages·2010·6.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ANP-10311NP, Revision 0

ANP-10311NP Revision 0 COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report March 2010 AREVA NP Inc. (c) 2010 AREVA NP Inc. Copyright © 2010 AREVA NP Inc. All Rights Reserved AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page i Nature of Changes Section(s) Item or Page(s) Description and Justification AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page ii Contents Page List of Tables .............................................................................................................................iv List of Figures ..............................................................................................................................v Nomenclature ............................................................................................................................xxi 1.0 Introduction....................................................................................................................1-1 1.1 Code Applications..............................................................................................1-5 1.2 Requested Code Review and Approval..............................................................1-6 1.3 References.........................................................................................................1-9 2.0 Problem Formulation and Solution.................................................................................2-1 2.1 Mixture Balance Equations.................................................................................2-1 2.1.1 Two-Phase Flow Definitions...................................................................2-1 2.1.2 Local-Instantaneous Navier-Stokes Equations.......................................2-7 2.1.3 Averaging Operators.............................................................................2-12 2.2 Subchannel Formulation of the Basic Equations..............................................2-15 2.2.1 Fuel Rod Array Geometry.....................................................................2-17 2.2.1.1 Lateral scaling of crossflow resistance factor...........................2-22 2.2.1.2 Lateral scaling of turbulent mixing............................................2-22 2.2.1.3 Lateral scaling of the lateral momentum parameter..................2-23 2.2.2 Subchannel Mass Conservation Equation............................................2-24 2.2.2.1 Diversion Crossflow..................................................................2-26 2.2.2.2 Turbulent Interchange...............................................................2-26 2.2.3 Subchannel Momentum Balance Equations.........................................2-27 2.2.3.1 Axial Momentum Equation........................................................2-27 2.2.3.2 Lateral Momentum Balance......................................................2-30 2.2.4 Subchannel Energy Conservation Equation.........................................2-32 2.2.5 COBRA-FLX Basic Equations..............................................................2-35 2.2.5.1 Mass Conservation...................................................................2-35 2.2.5.2 Momentum Balance Equations.................................................2-35 2.2.5.3 Energy Conservation................................................................2-37 2.2.5.4 Equation of State......................................................................2-39 2.3 COBRA-FLX Numerical Solution Methodology................................................2-40 2.3.1 SCHEME Solution Methods..................................................................2-43 2.3.1.1 COBRA-FLX Finite-Difference Equations.................................2-43 2.3.1.2 General Computational Procedure...........................................2-54 2.3.1.3 Crossflow SCHEME Solution Logic..........................................2-59 2.3.1.4 Pressure SCHEME Solution Logic............................................2-61 2.3.2 Pressure-Velocity (PV) Solution Method..............................................2-66 2.3.2.1 Thermal-Hydraulic Model Equations.........................................2-67 2.3.2.2 Control Volume Equations........................................................2-72 2.3.2.3 Closure Relationships...............................................................2-90 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page iii 2.3.2.4 PV Numerics.............................................................................2-92 2.4 Boundary Conditions......................................................................................2-119 2.4.1 Inlet Enthalpy / Inlet Temperature.......................................................2-119 2.4.2 Power .................................................................................................2-119 2.4.3 System Pressure................................................................................2-121 2.4.4 Exit Pressure Distribution...................................................................2-121 2.4.5 Inlet Flow............................................................................................2-122 2.4.6 Transient Forcing Functions...............................................................2-122 2.5 References.....................................................................................................2-123 3.0 Code Structure And Flow Logic Description..................................................................3-1 4.0 Subroutine Description...................................................................................................4-1 5.0 Verification and Validation..............................................................................................5-1 5.1 Conservation of Mass and Energy.....................................................................5-2 5.2 Experimental Validation of the Fluid Flow Solution............................................5-4 5.2.1 Inter-Bundle Diversion Cross-Flow Tests...............................................5-4 5.2.2 MARIGNAN Crossflow Tests................................................................5-12 5.3 Experimental Validation of Empirical Correlations............................................5-18 5.3.1 Critical Heat Flux Correlations..............................................................5-19 5.3.2 Validity of Steady-State Critical Heat Flux (CHF) Correlations in Transient Applications..................................................5-19 5.4 Comparisons of Solution Algorithms (Solution Schemes)................................5-21 5.5 Modeling Size...................................................................................................5-27 5.6 Heat Transfer Package....................................................................................5-28 5.7 Comparison of Fluid Flow Solution to Other Subchannel codes......................5-32 5.7.1 Steady-State Comparisons to Other Codes.........................................5-32 5.7.1.1 2-Channel Calculations with No Crossflow...............................5-32 5.7.1.2 38-Channel Calculations With Crossflow..................................5-35 5.7.1.3 Examination of Void Model Impacts Between Codes...............5-39 5.7.2 Transient Comparisons with Other Codes............................................5-41 5.7.2.1 4 Pump Coastdown Transient...................................................5-42 5.7.2.2 Locked Rotor Transient.............................................................5-48 5.7.2.3 Main Steam Line Break Transient.............................................5-49 5.8 Verification and Validation Conclusions...........................................................5-50 5.9 References.......................................................................................................5-52 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page iv List of Tables Page Table 1-1: The Extent of the COBRA-FLX Review and Approval Requests.............................1-7 Table 1-2: Empirical Correlation Application for Requested Review and Approval..................1-8 Table 5-1: Example of COBRA-FLX Heat and Exit Mass Balance Errors................................5-3 Table 5-2: Summary of COBRA-FLX Predictions Using the SCHEME-Pressure (P) and Pressure-Velocity (PV) Solution Methods versus Test Values for IBDCF Tests......................................................................................................5-7 Table 5-3: Summary of COBRA-FLX Predictions Using the Pressure-Velocity (PV) Solution Methods versus Test Values for the Severe Inlet Flow Asymmetry IBDCF DCF Tests................................................................................5-8 Table 5-4: DNBR Comparison During a 4 Pump Coastdown Using the P and PV Solution Methods..................................................................................................5-23 Table 5-5: Statistics for the P and PV Based Predictions for Subchannel Enthalpies.............................................................................................................5-26 Table 5-6: Minimum DNBR Predictions for Various Core Model Sizes for a 4 Pump Coastdown .................................................................................................5-28 Table 5-7: COBRA-FLX Heat Transfer Modes.......................................................................5-29 Table 5-8: Summary of DNBR Comparison for the 12-Channel Model for the 4 Pump Coastdown .................................................................................................5-43 Table 5-9: COBRA-FLX and LYNXT Minimum DNBR Sensitivity to Modeling Parameters for the 4 Pump Coastdown................................................................5-45 Table 5-10: Summary of DNBR Comparison for the 12-Channel Model for the Locked Rotor ........................................................................................................5-48 Table 5-11: COBRA-FLX and LYNXT Minimum DNBR Sensitivity to Modeling Parameters for the Locked Rotor..........................................................................5-49 Table 5-12: Summary of DNBR Comparison for the 17-Channel Model for the Main Steam Line Break.........................................................................................5-50 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page v List of Figures Page Figure 1-1: ARCADIA® Code System.......................................................................................1-4 Figure 1-2: Typical COBRA-FLX U.S. Application Input/Output Interfaces...............................1-6 Figure 2-1: Arbitrary Eulerian Control Volume..........................................................................2-2 Figure 2-2: Vertical Flow Past Fuel Rods.................................................................................2-3 Figure 2-3: Subchannel Control Volume.................................................................................2-15 Figure 2-4: Relation of Subchannel Control Volume to Reactor Core....................................2-16 Figure 2-5: A Pair of Subchannels..........................................................................................2-19 Figure 2-6: Example of Subchannel Numbering.....................................................................2-21 Figure 2-7: General Solution Flow Chart................................................................................2-43 Figure 2-8: Nodal Designation for Channels and Axial Location Indexes...............................2-45 Figure 2-9: SCHEME Solutions Sequence.............................................................................2-56 Figure 2-10: [ ]..........................................2-65 Figure 2-11: [ ]...................................................2-65 Figure 2-12: Pair of Interconnected Subchannels...................................................................2-75 Figure 2-13: Axial Nodal Indices for Control Volumes............................................................2-77 Figure 2-14: Control Volume for Mass Equation.....................................................................2-78 Figure 2-15: Control Volume for Energy Equation..................................................................2-79 Figure 2-16: Control Volume for Axial Momentum Equation...................................................2-84 Figure 2-17: Control Volume for Lateral Momentum Equation ...............................................2-90 Figure 2-18: PV Solution Sequence......................................................................................2-118 Figure 2-19: Example of Rod with Multiple Fluid Connections.............................................2-121 Figure 3-1: COBRA-FLX Code Structure..................................................................................3-2 Figure 3-2: COBRA-FLX High Level Solution Logic.................................................................3-7 Figure 3-3: SCHEME Solution Logic.........................................................................................3-9 Figure 3-4: Pressure-Velocity (PV) Solution Logic..................................................................3-10 Figure 5-1: Radial Node Scheme for the 12-Channel Model of a 193 Fuel Assembly Core (1/8th Core Symmetry)..................................................................................5-3 Figure 5-2: Two-Bundle Isothermal Crossflow Test Apparatus for the IBDCF Tests................5-5 Figure 5-3: Cross-Sectional View of IBDCF Test Arrangement................................................5-6 Figure 5-4: Cross-Sectional View of the IBDCF Test Arrangement Showing the 4 Channel Model Definition......................................................................................5-9 Figure 5-5: Axial and Crossflow Velocity for Channel 1 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-10 Figure 5-6: Axial and Crossflow Velocity for Channel 2 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-10 Figure 5-7: Axial and Crossflow Velocity for Channel 3 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-11 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page vi Figure 5-8: Axial and Crossflow Velocity for Channel 4 of IBDCF Test 147 Using PV Solution Method..................................................................................................5-11 Figure 5-9: MARIGNAN Test Configuration with Two Adjacent Fuel Assemblies with Defined Subchannels (lateral view).....................................................................5-13 Figure 5-10: Location of the Velocity Measurements in the MARIGNAN Test Configuration (Full View).....................................................................................5-14 Figure 5-11: Location of the Velocity Measurements in the MARIGNAN Test Configuration (Exploded View)............................................................................5-15 Figure 5-12: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= - 200.0 mm in the MARIGNAN Test............................................5-16 Figure 5-13: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= - 7.5 mm in the MARIGNAN Test................................................5-17 Figure 5-14: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= +7.0 mm in the MARIGNAN Test................................................5-17 Figure 5-15: Axial Velocity Comparisons by Subchannel Row at the Relative Axial Location of Y= +200.0 mm in the MARIGNAN Test............................................5-18 Figure 5-16: DNBR Response During a 4 Pump Coastdown Using the P and PV Solution Methods.................................................................................................5-22 Figure 5-17: DNBR Response During a 4 Pump Coastdown Using the P and PV Solution Methods for the Axial Range of 200 to 350 cm.....................................5-23 Figure 5-18: DNBR-Limiting Subchannel Mass Flux versus Axial Location at Three Times during a 4 Pump Coastdown for the P and PV Solution Methods............5-24 Figure 5-19: DNBR-Limiting Subchannel Enthalpy versus Axial Location at 0.0 Seconds During a 4 Pump Coastdown for the P and PV Solution Methods......................5-25 Figure 5-20: DNBR-Limiting Subchannel Enthalpy versus Axial Location at 3.4 Seconds during a 4 Pump Coastdown for the P and PV Solution Methods.......................5-25 Figure 5-21: DNBR-Limiting Subchannel Enthalpy versus Axial Location at 4.8 Seconds during a 4 Pump Coastdown for the P and PV Solution Methods.......................5-26 Figure 5-22: Transient “A” Progression through Heat Transfer Modes...................................5-30 Figure 5-23: Transient “A” Clad Wall Temperature Response................................................5-30 Figure 5-24: Transient “B” Progression through Heat Transfer Modes...................................5-31 Figure 5-25: Transient “B” Clad Wall Temperature Response................................................5-31 Figure 5-26: 2-Channel Model with No Crossflow for Code Comparisons..............................5-32 Figure 5-27: Normalized Axial Pressure Drop Comparison for the 2-Channel Model with No Crossflow.......................................................................................................5-33 Figure 5-28: Axial Void Fraction Comparison for the 2-Channel Model with No Crossflow....5-34 Figure 5-29: Coolant Density Comparison for the 2-Channel Model with No Crossflow.........5-34 Figure 5-30: Coolant Enthalpy Comparison for the 2-Channel Model with No Crossflow.......5-35 Figure 5-31: Radial Node Scheme for the 38 Channel Model (1/8th Core Symmetry) With Crossflow for Code Comparisons........................................................................5-36 Figure 5-32: Mass Velocity Comparison for the 38-Channel Model With Crossflow...............5-37 Figure 5-33: Void Fraction Comparison for the 38-Channel Model with Crossflow................5-38 Figure 5-34: Coolant Enthalpy Comparison for the 38-Channel Model with Crossflow..........5-39 AREVA NP Inc. ANP-10311NP COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Page vii Figure 5-35: Mass Velocity Comparison for the 38-Channel Model Using the Homogenous Void Model....................................................................................5-40 Figure 5-36: Void Fraction Comparison for the 38-Channel Model Using the Homogenous Void Model....................................................................................5-40 Figure 5-37: Void Fraction Comparison for the 2-Channel Model Using the Homogenous Void Model..........................................................................................................5-41 Figure 5-38: Radial Node Scheme for a 17-Channel Model (1/8th Core Symmetry) for the Main Steam Line Break Event.......................................................................5-42 Figure 5-39: DNBR Comparison for the 12-Channel Model for the 4 Pump Coastdown........5-43 Figure 5-40: Mass Velocity Comparison for the 12-Channel Model for the 4 Pump Coastdown..........................................................................................................5-44 Figure 5-41: Thermodynamic Quality for the 12-Channel Model for the 4 Pump Coastdown..........................................................................................................5-44 Figure 5-42: DNBR Comparison for the Combined Effect of All Modeling Parameters in Table 5-9 for the 4 Pump Coastdown..................................................................5-46 Figure 5-43: Mass Velocity Comparison for the Combined Effect of All Modeling Parameters in Table 5-9 for the 4 Pump Coastdown at the Time of Minimum DNBR...................................................................................................5-47 Figure 5-44: Thermodynamic Quality Comparison for the Combined Effect of All Modeling Parameters in Table 5-9 for the 4 Pump Coastdown at the Time of Minimum DNBR...............................................................................................5-47 Figure 5-45: DNBR Comparison for the 12 Channel Model for the Locked Rotor..................5-48 Figure 5-46: DNBR Comparison for the 17-Channel Model for the Main Steam Line Break in the Limiting Subchannel........................................................................5-50 AREVA NP Inc. ANP-10311NP Revision 0 COBRA-FLX: A Core Thermal-Hydraulic Analysis Code Topical Report Appendix Page viii Table of Contents Page Appendix A : Empirical Correlations........................................................................................A-1 A.1 Introduction........................................................................................................A-1 A.2 Water Properties...............................................................................................A-1 A.3 Friction Factor ...................................................................................................A-1 A.3.1 Single-phase Flow..............................................................................A-2 A.3.2 Two-phase Flow.................................................................................A-5 A.4 Void Fraction Correlation...................................................................................A-7 A.4.1 Bulk Void.............................................................................................A-7 A.4.2 Subcooled Void.................................................................................A-18 A.5 Heat Transfer Coefficients...............................................................................A-23 A.6 DNBR Iteration Scheme..................................................................................A-38 A.7 References......................................................................................................A-39 Appendix B : COBRA-FLX Development History.....................................................................B-1 B.1 History...............................................................................................................B-1 B.2 History of COBRA Development.......................................................................B-1 B.2.1 COBRA Versions Leading to COBRA 3-CP.......................................B-2 B.2.2 Creation and Further Development of COBRA 3-CP.........................B-5 B.3 References........................................................................................................B-8 Appendix C : Critical Heat Flux Correlation Validation.............................................................C-1 C.1.1 Validation Process..............................................................................C-1 C.2 The ACH-2 CHF Correlation .............................................................................C-4 C.2.1 Measured to Predicted CHF Performance..........................................C-5 C.2.2 Design Limit DNBR.............................................................................C-8 C.2.3 Ranges and Limitations......................................................................C-9 C.3 The BHTP CHF Correlation.............................................................................C-10 C.3.1 Predicted to Measured CHF Performance........................................C-10 C.3.2 Statistical Design Limit......................................................................C-12 C.3.3 Ranges and Limitations....................................................................C-13 C.4 The BWU-Z CHF Correlation for Mark-BW17 Fuel with MSMGs....................C-14 C.4.1 Measured to Predicted CHF Performance........................................C-15 C.4.2 Statistical Design Limit......................................................................C-16 C.4.3 Ranges and Limitations....................................................................C-18 C.5 The BWU-Z CHF Correlation for Mark-BW17 Fuel.........................................C-18 C.5.1 Measured to Predicted CHF Performance........................................C-19 C.5.2 Statistical Design Limit......................................................................C-21 C.5.3 Ranges and Limitations....................................................................C-23

Description:
COBRA-FLX: A Core Thermal-Hydraulic Analysis Code. Topical Report. March 2010. AREVA NP Inc. (c) 2010 AREVA NP Inc. Code Structure And Flow Logic Description . Creation and Further Development of COBRA 3-CP .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.