ebook img

Another shock for the Bullet cluster, and the source of seed electrons for radio relics PDF

2.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Another shock for the Bullet cluster, and the source of seed electrons for radio relics

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed23March2016 (MNLATEXstylefilev2.2) Another shock for the Bullet cluster, and the source of seed electrons for radio relics Timothy W. Shimwell1,2(cid:63), Maxim Markevitch3, Shea Brown4, Luigina Feretti5, 6 1 B. M. Gaensler6, M. Johnston-Hollitt7, Craig Lage8, Raghav Srinivasan7 0 2 1CSIROAstronomy&SpaceScience,AustraliaTelescopeNationalFacility,POBox76,Epping,NSW1710,Australia r 2LeidenObservatory,LeidenUniversity,POBox9513,NL-2300RALeiden,theNetherlands a M 3AstrophysicsScienceDivision,NASA/GoddardSpaceFlightCenter,Greenbelt,MD20771,USA 4DepartmentofPhysicsandAstronomy,UniversityofIowa,203VanAllenHall,IowaCity,IA52242,U.S.A 5INAF-IstitutodiRadioastronomia,viaGobetti101,40129Bologna,Italy 1 6SydneyInstituteforAstronomy,SchoolofPhysics,TheUniversityofSydney,NSW2006,Australia 2 7SchoolofChemical&PhysicalSciences,VictoriaUniversityofWellington,POBox600,Wellington6014,NewZealand 8CenterforCosmologyandParticlePhysics,DepartmentofPhysics,NewYorkUniversity,NY,NY10003,USA ] E H . h Accepted—;received—;inoriginalform23March2016 p - o ABSTRACT r t s With Australia Telescope Compact Array observations, we detect a highly elongated a [ Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. 2 Thispowerfulrelic(2.3±0.1×1025 WHz−1)consistsofabrightnorthernbulbandafaint v lineartail.Thebulbemits94%oftheobservedradiofluxandhasthehighestsurfacebright- 4 nessofanyknownrelic.ExactlycoincidentwiththelineartailwefindasharpX-raysurface 6 0 brightness edge in the deep Chandra image of the cluster – a signature of a shock front in 1 thehotintraclustermedium(ICM),locatedontheoppositesideoftheclustertothefamous 0 bowshock.ThisnewexampleofanX-rayshockcoincidentwitharelicfurthersupportsthe . hypothesisthatshocksintheouterregionsofclusterscanformrelicsviadiffusiveshock(re- 2 )acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are 0 comingfromalocalremnantofaradiogalaxy,whichweareluckytocatchbeforeitscom- 5 1 pletedisruption.Ifthisscenario,inwhicharelicformswhenashockcrossesawell-defined : regionoftheICMpollutedwithagedrelativisticplasma–asopposedtotheusualassumption v thatseedsareuniformlymixedintheICM–isalsothecaseforotherrelics,thismayexplain i X anumberofpeculiarpropertiesofperipheralrelics. r Keywords: radiationmechanisms:non-thermal–accelerationofparticles–shockwaves– a galaxies:clusters:individual:1E0657-55.8–galaxies:clusters:intraclustermedium–radio continuumgeneral 1 INTRODUCTION and temperature of the ICM (e.g Markevitch et al. 2002, Marke- vitchetal.2005,Russelletal.2010andOwersetal.2011).Un- Inthehierarchicalschemeofstructureformation,massivegalaxy fortunately,intheclusteroutskirts,wheremorestrongshocksare clustersareassembledbythecomingtogetheroflessmassivecom- expected (e.g. Hong et al. 2014), the X-ray flux is low and the ponents(e.g.Press&Schechter1974).Shocksplayacrucialrole X-ray identification of shocks is difficult (see e.g. Ogrean et al. inthisprocess,asduringclusterassemblytheydissipateasignif- 2013a). However, it is thought that a powerful shock can accel- icantquantityofgravitationalenergyintotheintraclustermedium erate electrons in the ICM (via diffusive shock acceleration, see (ICM).Shocksingalaxyclustersaredifficulttodetect;theywere Blandford & Eichler 1987) with sufficient efficiency to produce initiallydetectedinsomeofthemostmassivegalaxyclustersusing detectable synchrotron emission in the cluster outskirts, forming X-rayobservationstoidentifysharpedgesinthesurfacebrightness a radio relic (Ensslin et al. 1998). Indeed, regions of highly ex- tended, diffuse synchrotron emission on cluster peripheries have been frequently observed (see Ferrari et al. 2008, Bru¨ggen et al. (cid:63) E-mail:[email protected] (cid:13)c 0000RAS 2 Shimwelletal. 2012,Ferettietal.2012andBrunetti&Jones2014forrecentre- Table1.AsummaryofourATCAobservationstowards1E0657-55.8.The views),andinseveralcasesdeepX-rayobservationshaverevealed quoted synthesised beam FWHM and sensitivity correspond to a natural thatthesynchrotronemissionisco-locatedwithX-rayshocksig- weightingofthevisibilities,howeverthedatawereimagedatavarietyof natures (see e.g Giacintucci et al. 2008, Finoguenov et al. 2010, resolutionsbetween2.7(cid:48)(cid:48)and23.3(cid:48)(cid:48). Macarioetal.2011,Bourdinetal.2013,Akamatsu&Kawahara 2013andOgrean&Bru¨ggen2013c).However,theX-rayshocks Coordinates(J2000) 06:58:32.7-55:57:19.0 andsynchrotronemissionarenotalwayscolocated(seeOgreanet Amplitudecalibrator PKSB1934-638 Phasecalibrator PMNJ0742-56 al.2013b)whichraisesquestionsregardingtheformationscenario ImageRMS 15µJy/beam ofradiorelics.Itisthereforeessentialthattherelationshipbetween On-sourcetime 32hours theradiorelicsandX-raypropertiesoftheICMisfurtherstudied, Frequencyrange 1.1-3.1GHz asthiscanenhanceourunderstandingofradiorelicformation. Spectralresolution 1MHz The Bullet cluster 1E0657-55.8 is a well known, extremely SynthesisedbeamFWHM 6.5(cid:48)(cid:48)naturalresolution hot and massive merging galaxy cluster with a prominent bow PrimarybeamFWHM 42(cid:48)-15(cid:48) shock,richgravitationallensingdatasetandapowerfulgiantradio Polarisationsmeasured XX,YY,XYandYX halo(seee.gTucker,Tananbaum,&Remillard1995,Tuckeretal. 1998,Markevitchetal.2002,Cloweetal.2006,Liangetal.2000 andShimwelletal.2014).Liangetal.(2000)suggestedthatalarge etal.(2000).Differentpointings,observedwithsmallrelativeoff- radio relic is present in the peripheral region of this cluster. This sets to minimise the effect of detector response variations, were proposedradiorelichasnotbeenconfirmeduntilourrecentdeep coadded,imagesofthebackgroundcomponentssubtracted,andthe 1.1-3.1GHzAustraliaTelescopeCompactArray(ATCA)observa- resultdividedbytheexposuremap.Thefinalimagewasextracted tions(Shimwelletal.2014)whichweusehere.Wealsoexplorethe in the 0.8−4 keV band and binned by 8 to a pixel size of 3.9(cid:48)(cid:48). relationshipbetweentheradioemissionandX-rayemissionusing GiventhehighgastemperatureandthepeakACIS-Isensitivityat ourradiodatatogetherwithadeepChandraX-raydataset. E=1−2keV,theimageinthisenergybandessentiallygivesthe HereafterweassumeaconcordanceΛCDMcosmology,with line-of-sightintegralofthesquareofthegasdensity. Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 kms−1Mpc−1. At the red- PointsourceswereleftintheX-rayimagesshowninthispa- shift of the Bullet cluster (z=0.296) the luminosity distance is pertoillustratetheangularresolutionofthedata,butexcisedfrom 1529Mpc and 1(cid:48)(cid:48) corresponds to 4.413kpc. All coordinates are further analysis. The spectral analysis followed standard steps of giveninJ2000. extracting the spectra of the source and of the background com- ponents(sky+detectorandreadout)fromaregionofinterest,cre- ating the instrument response files, and fitting a thermal plasma model (APEC) in XSPEC, fixing the Galactic absorption column 2 OBSERVATIONSANDDATAREDUCTION atNH =4.6×1020cm−2,andincludingtheadditionalcomponent toaccountforthedifferencebetweentheblank-skymodelandthe WeusedtheATCAtoobserve1E0657-55.8between2012Decem- actual source-free background spectrum as described above, nor- ber 17 and 2013 February 17 (project C2756). The observations malisedaccordingtotheregionarea.Theuncertaintyofthiscom- werecarriedoutinfourconfigurationsoftheATCAantennas;the ponentwasnegligible—omittingthiscomponententirelychanged targetwasobservedfor8,5,9and10hoursinthe1.5B,1.5D,6A thebest-fittemperaturesbyasmallfractionoftheirstatisticalun- and6Barrays,respectively.Theseobservationsaresummarisedin certainty.Toincludetheeffectofthebackgrounduncertaintiesin Table1 andafull descriptionofthesedata isgivenby Shimwell thederivedgastemperaturevalues,wevariedthebackgroundnor- et al. (2014), in which we concentrated on the cluster’s giant ra- malization by ±3% (a 90% scatter; Hickox & Markevitch 2006) diohalo.Theflagging,calibrationandimagingtechniquesareall andaddedthedifferenceinquadraturetothestatisticaluncertainty. describedbyShimwelletal.(2014). FortheX-rayanalysisweuseasetofarchivalChandraACIS- Ipointingswithatotalcleanexposureof522ks,resultsfromwhich werepresentedbyMarkevitch(2006),Cloweetal.(2006),Owers 3 RESULTS etal.(2009)andinotherworks.Fulltechnicaldescriptionofthe In Figure 1 we present a medium resolution image of the 1.1- X-ray analysis will be presented by Markevitch et al., in prepa- 3.1GHzradioemissionfromtheBulletcluster.Weobservediffuse ration;herewegivethedetailsrelevantforourinterestingregion emissionintheeasternperipheryoftheBulletcluster.Thedetected of low X-ray surface brightness, for which background modeling object peaks at RA (J2000) 06:58:51.2 DEC (J2000) -55:57:13.5 isimportant.Lightcurvesoftheindividualpointingswereexam- whichis≈170(cid:48)(cid:48)(750kpc)fromtheclustercentre.Aroundthispeak inedforperiodsofevelatedbackground;onlyamininalnumberof thereisabulbofbrightdiffuseemissionthatisconnectedtoafaint, suchtimeintervalshadtobeexcluded.Thedetectorplusskyback- linearstructurethatextendssouthwards.Hereafter,werefertothe groundwasthenmodeledusingtheblank-skydatasetnormalised brightnorthernbulbasregionA(declinationrange-55:56:09.1to- bycountsinthe9.5–12keVenergyband.Afterthat,wechecked 55:57:57.1),thefaintersouthernpartasregionB(declinationrange thebackgroundinthesource-freeregionsofthefieldofviewand -55:57:57.1to55:59:42.0)andtheentirestructureasregionA+B. detectedaresidualfaintflarecomponent,whichwemodeledwith We have measured the integrated flux of the diffuse radio a power law spectrum (without the application of the mirror en- emissionasafunctionoffrequencyforregionsAandB(seeFig- ergyresponse)andaspatialdistributionsimilartothatofthequi- ure 2) and characterised the 1.1GHz to 3.1GHz emission with escent background. This model described the difference between (cid:16) (cid:17)α the blank-sky background and the real background in our obser- Iν=Iν0 νν0 ,whereν0is1.4GHz.Wecalculatedtheuncertainty vations well at all energies except for residuals below our lower onourintegratedfluxdensitymeasurementsbyaddinginquadra- energy bound, which we ignored. The ACIS readout artifact was ture the ATCA absolute flux calibration error of 2% (Reynolds modeledasabackgroundcomponentasdescribedbyMarkevitch 1994)withtheerrorontheintegratedfluxdensityderivedfromthe (cid:13)c 0000RAS,MNRAS000,000–000 3 -55°55'00.0" 2.56 102 HALO 1.28 56'00.0" 0.64 y) 57'00.0"Region A mJ Dec (J2000) 58'00.0" 00..1362mJy/beam ated flux (101 gr Region B e 59'00.0" 0.08 Int J06587-5558 0.04 -56°00'00.0" 0.02 01'00.0" 100 2 3 Frequency (GHz) 59m00.00s 50.00s 40.00s 30.00s 6h58m20.00s 0.01 RA (J2000) Figure2.Theintegratedfluxoftheproposedradiorelicasafunctionof Figure1.Amediumresolution(FWHM≈7(cid:48)(cid:48))StokesIimagetowards1E frequency.ThegreenandredpointsshowtheintegratedfluxforregionsA 0657-55.8.This1.1-3.1GHzimagehasbeenprimarybeamcorrected,the andB,respectively.Theblacksolidlinesshowthebestfittingpowerlaws greyscaleisinmJy/beamandthemeasurednoiseis15µJy/beam.Theradio tothemeasurementsfromregionsAandBandthedashedlinesshowthe halo(Shimwelletal.2014),LEH2001J06587-5558andtheproposedradio errorsonthesefits. relic(regionsAandB)arelabelled. imagenoise.WedeterminethatIν0 isequalto77.8±3.1mJyand 0.14 4.8±0.6mJyandthatαisequalto−1.07±0.03and−1.66±0.14 forregionsA,andB,respectively.Awiderfrequencyrange(1.4- 0.12 6.2GHz)offluxmeasurementswillbepresentedbySrinivasanet )% al.,inpreparation.IntheleftpanelofFigure3weshowthevaria- n (0.10 o tionsinthespectralindexacrossthediffuseemission.InregionA ati weareabletoaccuratelyconstrainthespectralindexandobserve aris0.08 ol an East-West gradient, with a spectral index of ≈-0.8 in the East al p0.06 and≈-1.5intheWest.InregionBthediffuseemissionisdetected on atlowersignificance,whichpreventedusfromcharacterisingspa- acti0.04 Fr tialtrendsinitsspectralindex. 0.02 InFigure1andShimwelletal.(2014)weseeaverylowsig- nificance bridge of emission between region B of the radio relic, 0.00 J06587-5558, and the south eastern region of the radio halo. The 1.5 2.0 2.5 3.0 Frequency (GHz) bridge may physically connect the radio halo and radio relic but J06587-5558–whichLiangetal.(2001)speculatedmaybeagrav- Figure4.Thefractionalpolarisedfluxasafunctionoffrequencyforregion itationallens,ahighredshiftradiogalaxy,oraradiorelic–isnow Aoftheproposedradiorelic.Theredpointsshowthefractionalpolarised thoughttobeahighredshift(z∼2.8)galaxy(Johanssonetal.2012). emission,wheretheStokesQandUdatawereimagedin100MHzsections (cid:112) Furtherdataisrequiredtoproperlycharacterisethisbridgeofemis- andP= U2+Q2.Thebluepointsshowthefractionalpolarisedemission fromtherelicbutwheretheStokesQandUdatawereimagedin200MHz sionbutstructuresconnectingrelicsandhalosareobservedinother sections. clusters(seee.g.Venturietal.2013). tionanglesshownonthe2.3-2.5GHzimagepresentedinFigure3 3.1 Polarisationresults by14degreesanticlockwise.Figure3showsthatinthenorthern- mostregionoftherelic,wherethepolarisedemissionisstrongest, RegionAoftherelicispolarisedandinFigure4wepresentthe the B-vectors are aligned with the major axis of the relic. South- fractional polarised emission as a function of frequency for this wardsofthistheB-vectorsgraduallybecomelessalignedwiththe region. The low significance of the emission from region B pre- majoraxisoftherelicbutthistrendcouldbeduetorotationmea- ventedusfrommakingsimilarmeasurementsinthatregion.Polar- surevariationsacrosstheobjectwhichwehavenottakenintoac- isationmeasurementswereperformedon100MHzand200MHz count.WhilsttheboundarybetweenregionsAandBoftherelic sub-bands.Theconsistentresultsfromthesemeasurementsdemon- cannotbepreciselydefined,thegradualtransitionintherotationof stratethatourintegratedpolarisedfluxmeasurementsarenotsig- thepolarisationvectorsgivestheimpressionthatregionsAandB nificantly effected by bandwidth depolarisation. From 1.5GHz maybephysicallyconnectedandnotmerelyachanceprojection. to 2.2GHz the fractional polarisation increases rapidly with fre- quency.InthecentrepanelofFigure3weshowapolarisationim- age of the diffuse emission. Additionally, we have measured that 3.2 RegionA:noopticalcounterpart theFaradaydispersionspectrum,F(φ),peaksatφ=−16rad/m2at theregionofthepeakoftheStokesIemissionbutissimilaracross ThesurfacebrightnessofregionAisanomalouslyhighforarelic, thediffuseemission.Thiscorrespondstoarotationofthepolarisa- which suggests that it may be a remnant of a radio galaxy. Un- (cid:13)c 0000RAS,MNRAS000,000–000 4 Shimwelletal. 0.30 50000 0.30 -55°56'00.0" 45000 0.27 40000 35000 -55°57'00.0" 0.45 -55°57'00.0" 0.24 30.0" 30000 0.60 25000 0.21 Dec (J2000) 58'00.0" 00..9705αSpectral Index () Dec (J2000) 58'00.0" 00..1158mJy/beam Dec (J2000) 57'3000..00"" 112050000000000Counts/pixel 1.05 0.12 5000 59'00.0" 59'00.0" 1.20 0.09 58'00.0" 1.35 0.06 -56°00'00.0"59m00s 57s 54s 51s6h58m48s -56°00'00.0"59m00s 57s 54s 51s6h58m48s 30.0" 59m00s 56s 52s 6h58m48s 0 RA (J2000) RA (J2000) RA (J2000) Figure3.Left:thecontoursshowthe1.1-3.1GHzprimarybeamcorrectedcontinuumemissionfromtheproposedradiorelicataresolutionof10(cid:48)(cid:48) with √ contourlevelsat±5× 1,2,4,8,...×15µJy;positivecontoursaresolidlinesandnegativecontoursaredashed.Thecolourscaleshowsthe1.1-3.1GHz spectralindeximageatthesameresolution,whereregionsinwhichthespectralindexerrorexceeds0.3havebeenblanked.Centre:Thecolourscaleshows the2.3-2.5GHzpolarisationimage(P=(cid:112)U2+Q2)ataresolution√of≈10(cid:48)(cid:48),thescaleisinJyandpixelswithP/σQ,U<2havebeenblanked,whereσQ,Uisthe standarddeviationoftheQandUimages.Thecontoursshowthe 1,2,4,8,...×100µJylevelontheimage.ThevectorsrepresenttheobservedB-vectors(the E-vectorsorpositionangle,θ,rotatedby90◦,wheretan(2θ)=U/Q),andwerederivedfromthe2.3-2.5GHzdataset.Thevectorshavenotbeenrotatedback tothezero-wavelengthpositionanglebutmeasurementsoftheFaradaydispersionspectrum,whichpeaksatφ=−16rad/m2,indicatethatthiscorrespondsto arotationofonly14degreesanticlockwise.Right:ThecolourscaleshowstheR-bandimagepresentedbyCloweetal.(2006).Theoverlaidcontoursarethe √ 5× 1,4,16,...×15µJylevelsofahighresolution(FWHM≈3(cid:48)(cid:48))1.1-3.1GHzATCAimage,showingthestructureinregionAoftherelic.Theredcircles showthecolour-selectedlikelyclustergalaxiesfromCloweetal.(2006).ForallimagestheellipseinthebottomleftcornershowstheATCAsynthesised beam. fortunately,inthisregionontheedgeofthecluster,wehavenot 100000 beenabletofindspectroscopicallyconfirmedclustermembersin 90000 -55°55'00.0" 80000 the literature. However, in Clowe et al. (2006) they used R, B 70000 andVbandMagellanIMACSimagestodeterminecolor-selected 60000 56'00.0" likely cluster galaxies, a catalog of these sources is available 50000 from http://flamingos.astro.ufl.edu/1e0657/public.html. Although 40000 ttahhgeiesrpceradetssahelonifgttedteorigrnoertChsleoorwnwetihtehetsatehl.es(o2du0er0ecp6e)sRtow-bsialelnadbrceMhlfaaogrgreeltlh,aenwseIoMuhrAacveCeoSufistmehde- Dec (J2000) 5587''0000..00"" 2300000000Counts/pixel diffuseradioemission(seetherightpanelofFigure3).TheR-band imagereachesalimitingmagnitudeof25.1andforalmostallofthe 59'00.0" 10000 otherradiosourcesthatwehavedetectedaclearcounterpartisseen intheR-bandmaps–thisisdemonstratedinthewidefieldR-band -56°00'00.0" image presented in Figure 5. There is no obvious counterpart to thediffuseradioemissionbuttherearemanycolour-selectedlikely 01'00.0" clustermembersclosetotheregionofradioemission,particularly 59m00s 50s 40s 30s 6h58m20s 0 RA (J2000) thosenearthesoutheasternareaofregionA,whereinhighreso- lutionradioimagesweobserveatiptotheemission(seetheright Figure5.ThesameR-bandandradioimagethatarepresentedintheright panelofFigure3,butoverawiderfieldofviewtodemonstratethatthereis panelofFigure3).Wewouldexpectthattheproposeddeadradio aR-bandcounterpartformostoftheradiosourcesdetectedinourfield. galaxyishostedbyagiantellipticalgalaxy(Matthews,Morgan,& Schmidt1964)andafuturestudywouldbeusefultoconclusively identifynearbygiantellipticalsandstudytheirproperties. radio brightness profile, extracted in the same strip from the im- age shown on the left of Figure 6 (after excluding several bright pointsources),isshownbyadashedline.Itconfirmstheexactco- 3.3 RegionB:asecondshockfrontintheBulletcluster incidenceoftheX-rayedgeandtheradiorelic.TheX-raybright- WehaveexaminedtheX-rayimage(Figure6)intheregionofthe nessedgeismostprominentinthisstrip,althoughtheX-rayimage relic and discovered a clear X-ray brightness edge. The 2(cid:48)-wide suggestsitmayextendbyanother2−3(cid:48) tothenorthofthestrip, white rectangle in Figure 6 is oriented perpendicular to region B althoughitislesssharpthereandwouldnotqualifyasan“edge”. of the relic and has the relic emission positioned in the middle; TheX-rayedgeinregionBoftherelicisdefinedwellenoughforus itisclearfromtheoverlayofthisrectangle(aswellasofthera- toattempttoderivetheX-raygasdensityandtemperaturejumps. dio contours) on the X-ray image that the X-ray edge coincides TheX-rayprofilehastheexpectedshapeofaprojectedgasdensity withtherelic.Toshowthisbetter,wehaveextractedanX-raysur- discontinuity,asseeninmanycoldfrontsandshockfronts(Marke- facebrightnessprofileinthatrectangle,presentedinFigure7with vitch&Vikhlinin2007),andshouldallowustoderivethedensity x=0” corresponding to the position of region B of the relic. A jump.However,forthatweneedtoknowtheradiusofcurvature (cid:13)c 0000RAS,MNRAS000,000–000 5 ofthisdiscontinuityalongthelineofsight.Theusualapproachis toestimatethecurvatureofthebrightnessedgeintheplaneofthe skyandassumeitisthesameintheline-of-sightdirection.How- ever, our relic is a straight line. Thus, we assume (guided by the shapeoftheclusteroutsidethisregion)thatthecurvaturealongthe lineofsightshouldnotbeverydifferentfromthedistancetothe clustercentre.Wethususethisdistance(1.0Mpcfromthecluster centre to the middle of the relic tail) and change it by factors of 0.5and2tocoveraconservativerangeofpossibilities.Wethenfit thebrightnessprofileintheimmediatevicinityoftheedgewitha modelconsistingofapower-lawdensityprofile(withafreeslope) insidetheedgeandaβ-model(Cavaliere&Fusco-Femiano1978) outside (with a free slope and a fixed core radius for simplicity), withtheamplitudeandpositionofthedensitydiscontinuitybeing freeparameters.Thismodelprovidesanexcellentfit(redhistogram inFigure7);obviously,itisdegeneratewithrespecttotheradius ofcurvature.Forthenominalradius,thedensityjumpisafactor of2.67(therestofthebest-fitparametersare:outerβ =0.57for a fixed core radius of 450 kpc, inner density power-law slope of −1.6, and the density jump position x=+4(cid:48)(cid:48)). A 90% statistical interval(one-parameter,i.e.,leavingallotherparametersfree)for the density jump is 2.19–3.19, and that for the jump position is Figure7.TheX-raysurfacebrightnessprofileintheregionoftheradio ±2(cid:48)(cid:48).However,thesystematicuncertaintyonthejumpamplitude relicisshownbydatapoints.Theprofilewasextractedfromthe2(cid:48)-wide ismuchgreater—whentheradiusofcurvatureischangedbyfac- stripshowninFigure6.Thedashedlineshowsaradiobrightnessprofile torsof2and0.5,thebest-fitdensityjumpsarefactorsof1.92and (arbitraryunits)extractedinthesamestrip,aftertheexclusionofbright 3.64,respectively.(Wechosenottoco-addtheseuncertainties,be- pointsources.Atthepositionoftheradiorelic(x≈0(cid:48)(cid:48))weseeasharp causethestatisticalerrorismeasured,whilethesystematiconeis breakintheX-raysurfacebrightness,whichistypicalofaprojectedabrupt justaguess.)Ifthisedgewereashockfront,usingtheRankine- gasdensitydiscontinuity.Theredlineshowsabest-fitsurfacebrightness Hugoniot adiabat, the nominal best-fit density jump corresponds modelthatincludessuchadiscontinuity(Section3.3);thebest-fitposition ofthediscontinuityisx=+4(cid:48)(cid:48)±2(cid:48)(cid:48). toaMachnumberof2.45,anditssystematicuncertaintygivesan intervalM=1.66−5.5(butseebelowfortheupperbound). 4 DISCUSSION Radiorelicsarebelievedtobeformedbyshock-frontsinthepe- ripheralregionsofclusters(e.g.Ensslinetal.1998andRoettiger, Burns, & Stone 1999). This theory predicts that at radio wave- We have derived the gas temperature inside and outside the lengths there should be spectral steepening across the relic, high edgetoconfirmthatthisisashockfront.Forashock,weexpectthe polarisationlevels,anddiffuseemissionassociatedwiththeICM. temperaturetobehigheronthedenseside,whileforacoldfront Furthermore,thereshouldbeshocksignaturesintheX-rayemis- (another type of the density discontinuity commonly observed in sionfrom theICM. Weassert thatregions AandB ofthe Bullet clusters),thetemperaturejumpwouldhavetheoppositesign.We cluster,whichhavetheseproperties,arearadiorelic.Asaconse- fitthespectrafortheregionsinsideandoutsidetheedge,asshown quencetheBulletclusterbecomesoneofonly≈15objectsknown intheleftpanelofFigure8(asubregionofthestripusedforthe tohostbotharadiorelicandaradiohalo.Unlikeotherrelics,how- brightnessprofile).TherightpanelofFigure8showsthebest-fit ever,thisrelichastwodistinct,butphysicallyconnectedregions, values and 90% uncertainties, which include the background un- which may provide interesting clues on the nature of peripheral certainty(Section2).Whilethetemperatureinthedenserregionis relicsingeneral,aswewilldiscussbelow. high,thetemperatureoutsidetheedgeisessentiallyunconstrained, Theentirerelicstructurehasamaximumlengthof≈930kpc sowecannotunambiguouslyconfirmthatthisisashockbasedon (210(cid:48)(cid:48)),amaximumwidthof≈265kpc(60(cid:48)(cid:48))andapowerof2.3± thesignofthetemperaturejump.However,withsuchahightem- 0.1×1025W/Hz(log10P1.4=25.36±0.02W/Hz)whichmakesthis peraturemeasuredonthedenseside,forthisedgetobeacoldfront oneofthemostpowerfulradiorelicsknown.Unliketypicalradio wouldrequirethatthegasoutsidehasT >20keV,whichisquite relics,whichhaveafairlyuniformsurfacebrightnessdistribution implausibleatsuchdistancesfromthecentre.Thus,thefeatureis (e.g.Ferettietal.2012),forthisrelic94%oftheobservedfluxis almost certainly a shock. This shock is opposite the well-known, fromthenorthernbulb(regionA).Furthermore,regionA,witha westernshock(Markevitchetal.2002),similartothepairofshocks largestlinearsizeofjust330kpc(75(cid:48)(cid:48)),hasanexceptionallyhigh ontheoppositesidesoftheclustermergerseeninA2146(Russell surfacebrightnesscomparedtobothknownradiorelicsandtothe etal.2010,2012).Ifthisisindeedashock,a90%upperlimitonthe faintsouthernregionBoftheBulletclusterrelic(seeFigure9).An temperaturejumpacrossthisedgeisafactorof5.3(takingintoac- intriguingpossibilityisthattheexceptionallyhighfluxinregionA counttheasymmetricerrorsonthetwotemperatures).Whilethese isduetoalarge,pre-existing,populationofrelativisticelectronsin are projected temperatures, the brightness contrast is sufficiently thisregion.Thisexistingpopulationcouldbetheremnantsofara- high and the errors sufficiently large for the projection effects to diogalaxythathavebeenreacceleratedbythesameshockthatcre- beunimportant.ThisconstrainstheMachnumberatthehighend atedtherelicinregionB.Iftheremnantsoftheradiogalaxywere betterthanthedensityjumpdoes;ourfinalvalueisM≈2.5+1.3. reacceleratedthentheiroriginalstructureandpropertieswouldbe −0.8 (cid:13)c 0000RAS,MNRAS000,000–000 6 Shimwelletal. -2 -4 -4 -3 -5 -5 -6 -6 -4 -7 -7 1 Mpc 1 Mpc Figure6.Left:the1.1-3.1GHzprimarybeamcorrectedcontinuumemissionintheregionoftheBulletclusterataresolutionof≈13(cid:48)(cid:48) andwithagrey scaleinlog(S/[Jy/beam]).Centre:acolourscaleimagemadefrom500ksofChandraACIS-Idatafromthe0.8-4keVband(seeSection2)binnedtohavea pixelsizeof3.936(cid:48)(cid:48)withunitsinlog(Sx/[counts/s/(cid:48)(cid:48)2]).Right:theX-rayimagefromthecentrepaneloverlaidwiththeATCAimagewithcontourlevelsof (30,60,120,240,480,960)×1µJy.Inallimages,a2(cid:48)-widerectangularstrip,whichpassesoverthesouthernregionoftherelic,showstheregionusedtoextract theX-raysurfacebrightnessprofile.TheX-rayandATCAimagesaredisplayedwiththesameorientationandfieldofview. -4 2 1 -5 -6 -7 1 Mpc Figure8.Left:TheX-rayimagedisplayedinFigure6withaboxshowingthetworegionsinwhichthetemperaturewasdetermined.Right:Temperature measurementseithersideoftherelic(x=0(cid:48)(cid:48))derivedfromthetworegionsgivenintheleftpanel,theerrorsare90%confidenceandincludethebackground uncertainty. disturbed and they may attain the characteristic alignment in the butrelicsthatareobservedtobeelongated,suchasthisproposed magneticfieldaswellasgradientinspectralindexthatisexpected relic, have a mean spectral index of ≈−1.3 (Feretti et al. 2012). forarelic.Theunusualpropertiesofthisradiorelicmayreveala From our measurements of the spectral index, we determine the linkbetweenradiogalaxiesandradiorelics. expectedMachnumberoftheshockthatproducedtherelic(Bland- ford&Eichler1987)as Whilsttheflux-distributionofthisradiorelicisunusual,the linearmorphologyoftheemissionisverysimilartotheToothbrush M2+1 δ =2 +1, (1) relicthatisassociatedwiththegalaxycluster1RXSJ0603.3+4214 M2−1 (seevanWeerenetal.2012).HydrodynamicalN-bodysimulations where δ is the average power law index of the energy spectrum ofthatradiorelicbyBru¨ggen,vanWeeren,Ro¨ttgering(2012)re- ofemittingelectrons,includingtheageingeffectthatgives“+1” vealedthatalinearshockcouldbereproducedwithathree-cluster in the equation (Ginzburg & Syrovatskii 1964), and is related to merger consisting of two equal-sized clusters and a third much the integrated spectral index by −α =(δ−1)/2. For regions A smallercluster.ForthisrelicintheBulletcluster,thelinearshape andBwederiveMachnumbersofM=5.4+1.7 andM=2.0+0.2, does not necessitate the existence of a third cluster, because the −0.9 −0.1 respectively.TheMachnumberforregionBisingoodagreement X-ray image shows that the shock front is likely a segment of a withtheX-rayderivedMachnumberforthesameregionasderived larger-scalesurfacebrightnesscontourwithalargelocalradiusof inSection3.3,consistentwiththeradioemissionbeingtheresult curvature,whichdoesnotdeviatemuchfromthegeneralaxialsym- offirstorderFermiaccelerationontheICMshock. metryofthecluster. We have been unable to measure the polarisation properties Relicshavesteepspectralindicesintherange−0.9to−2.8, of region B, but within region A, we find that the 1.4GHz frac- (cid:13)c 0000RAS,MNRAS000,000–000 7 (2008)andBourdinetal.(2013)detectanX-raybrightnessedge 42.5 and temperature jump in Abell 521. Ogrean et al. (2013b) detect shocksnearthetworelicsin1RXSJ0603.3+4214(noneofwhich, 42.0 however,havebothunambiguoustemperatureandsurfacebright- ness jumps). Akamatsu & Kawahara (2013) found temperature ) (erg/s)41.5 ((bthuetnSoatussuagrfeacreelbicri)ghatnndestsh)edissocuotnhtineuaisttieersninreCliIcZAin2A24b2e.l8l+35636071. 2S Finoguenovetal.(2010)andAkamatsuetal.(2012)detectedboth LL41.0 g( P()/νν40.5 ttehmenpoerrathtuwreeastnedrnsurreflaicceinbrAigbhetlnle3s6s6d7i.scFoinnatilnlyu,itfioerstahtethCeolmocaactilounstoefr o relic,Ogrean&Bru¨ggen(2013c)detectatemperature(butonlya L hint of density) discontinuity using XMM. Using Suzaku for the 40.0 samerelic,Akamatsuetal.(2013b)reportedboththedensityand temperaturejumpsconsistentwithXMM,whileSimionescuetal. 39.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 (2013)reportedasteeperdeclineofthesurfacebrightness,which Distance from cluster center (Mpc) made it impossible to detect the pre-relic emission and derive its Figure9.Theradioluminosity(νP(ν),whereν=1.4GHz)perunitrelic temperature.(At2Mpcfromtheclustercenter,theComarelicis surfacearea.KnownrelicsfromFerettietal.(2012)areshownwithblack moredifficulttostudyinX-raysthanothers.)TheseX-rayresults, circles.Theblue,greenandredcrossesshowthepropertiesoftheBullet albeitatdifferentlevelsofconfidence,supporttheideathatX-ray clusterrelicsregionsA+B,AandB,respectively.Forpreviouslyknown shocksinfluenceradiorelicsintheclusterperipheralregions. relicsthelargestlinearsize(LLS),poweranddistancefromtheclustercen- treweretakenfromFerettietal.(2012).Thisplotissimilartothatpre- sentedbyBrunetti&Jones(2014),buttohighlighttheuniquepropertiesof theproposedBulletclusterrelic,wehaveincludedalltherelicsgivenby 4.1 Sourceofseedelectronsforreaccelerationinperipheral Ferettietal.(2012)eventhoughsomedetectionsareambiguous(seeNuza relics? etal.2012). These new observations pose a clear question: what is the differ- encebetweentheeasternandthepreviouslyknownwesternshock tionalpolarisationislowerthanthe10-30%typicallyobservedin intheBulletcluster?Bothshockshavesimilar,ratherlowX-rayde- relics (see e.g. Ferrari et al. 2008). However, similarly to other rivedMachnumbers,M=3.0±0.4forthewesternshock(Marke- relicswefindthattheobservedfractionalpolarisationchangessig- vitch2006)andM≈2.5forregionBofournewrelic.Thewestern nificantlyasafunctionoffrequency(seeFigure4),withthefrac- shock occurs in a higher density environment, and the study by tionalpolarisedintensityincreasingwithfrequency(seee.g.Pizzo Shimwelletal.(2014)showedthattheradiohaloemissioninthe et al. 2011 and van Weeren et al. 2012). At 1.7GHz, our detec- Bullet cluster is certainly influenced by this shock, but the radio tionofpolarisedemissionisatlowsignificance;atthisfrequency emission at the shock front is very weak and polarised emission thefractionalpolarisationis3.0±0.2%butat2.7GHzthefraction was not detected at all (the spectral index has also remained un- is 12.1±0.9%. By comparison, van Weeren et al. (2012) found determinedinthisregionduetothefaintnessoftheemission).By that in the brightest region of the Toothbrush relic the fractional comparison,theradiorelicemissionfromregionAoftherelicis polarisationat4.9GHzis15–30%butat1.4GHzitisbelow1%, fromaregionofverylowdensity,yettheemissionisverystrong, they suggested the depolarisation is caused by the ICM. For sev- has a distinctive spectral index gradient, and is significantly po- eralradiorelics,thede-rotatedpolarisationanglesarealignedto- larised.EventheweakemissionfromregionBoftherelicissig- wardstheclustercentre(seee.g.vanWeerenetal.2010).Weare nificantlybrighterthantheradiohaloemissionatthewesternshock onlyabletomeasurethepolarisationangleinregionAoftherelic, front. where the polarised intensity is highest, and find that the polari- For shocks of similar Mach numbers, the acceleration effi- sation angle is approximately aligned with the axis of the cluster ciencyshouldbesimilar.Therefore,theresultingsynchrotronradio merger(E-W).Giventhattherotationmeasureoftherelicpeaksat brightnessshouldbeproportionaltothedensityoftheseedelec- φ=−16rad/m2,correspondingtoarotationofthepolarisationan- trons that the shock accelerates, thus we may look there for the gleby14degreesanticlockwise,thisindicatesthattheB-vectoris explanation(ignoringforamomentthepossibledifferenceinthe alignedapproximatelyparalleltotheshocksurfaceasexpectedfor magneticfieldstrength).WerecallthatregionAofourreliclooks ashockfrontcompressingarandommagneticfield(seeFigure3). likeanoldradiogalaxyre-energized(itsagedelectronsreacceler- Thisalignmentisbestinthenorthernregionoftherelicwherethe ated) by a shock passage. While the tail B is coincident with the polarisedemissionisbrightest.SouthofthistheB-vectorbeginsto X-rayshockfront,wealsonoteditspossiblephysicalconnection deviatefromtheexpectedanglebutthiscouldbeduetoRMvaria- tothebulbA(Section3.1),withthepolarizedemissionextending tionsacrosstherelicthatwehavenotmeasured.Weareunableto fromthebulbintothetail(Figure3).Thisisastronghintthatseed distinguishtherotationmeasureoftherelicfromtheGalacticro- electrons in the tail could have been supplied by that same radio tationmeasurecontributioninthisdirection(+4.8±44.0rad/m2; galaxy. In this scenario, the radio galaxy remnant may have pol- Oppermannetal.2012),but,inthisregion,theerrorintheGalactic luted a peripheral region of the ICM (regions A+B), which may rotationmeasureisespeciallyhighduetothelowdensityofmea- presentlycontainamixtureofrelativisticandthermalICMgasbut surementsatdeclinationslessthan-40◦inthestudybyOppermann still remain well-defined spatially. The density of the aged rela- etal.(2012). tivisticelectronstherewouldbemuchhigherthanintherestofthe OnlyahandfulofotherexamplesofX-rayshocksatthepo- cluster(andinparticular,intheregionofthewesternshock),anda sitionsofrelicsexist.Macarioetal.(2011)detectsurfacebright- shockpassagewouldgenerateasynchrotronfeaturespatiallytrac- ness and temperature discontinuities in A754. Giacintucci et al. ingthatregion.Theregioncontainingtheoldradiogalaxyplasma (cid:13)c 0000RAS,MNRAS000,000–000 8 Shimwelletal. mayalsohaveahigherthanaveragemagneticfield,furtherincreas- erfulthanexpectedrelicsexistinsomelow-mass,low-luminosity ingthesynchrotronbrightness. clusters(e.g.Brown&Rudnick2009). Most other peripheral relics do not show such a sugges- Thescenariowheretheradiorelicsresultfromashockfront tive connection to a likely old radio galaxy, with notable excep- re-energizingtheagedradioplasmaremainingfromalocalradio tionsincludingtheComarelic(Giovannini,Feretti,&Stanghellini galaxy was proposed before by Ensslin & Gopal-Krishna (2001, 1991 and Enßlin & Bru¨ggen 2002) and the northern relic in hereafter E01) and most recently by Bonafede et al. (2014), us- PLCKG287.0+32.9(Bonafedeetal.2014),whichapparentlycon- ingdifferentphysicalmechanisms.Inthe“phoenix”modelofE01 nects to the lobes of a radio galaxy. However, many relics do (see also Enßlin & Bru¨ggen 2002), a cocoon of aged relativistic show features that are difficult to explain in the simple scenario plasma,nolongeremittingattheobservableradiofrequenciesand where the shock (re-)accelerates seed electrons uniformly dis- inpressureequilibriumwiththesurroundingthermalICM,isadi- tributed throughout the ICM, or seed electrons coming directly abaticallycompressedbyashockfrontthatpropagatesintheICM from the thermal pool. Peripheral relics often have well-defined but skips the cocoon because of much higher sound speed there. boundariesandashapeinconsistentwiththeexpectedlens-likeor This shifts the exponential cutoff of the synchrotron spectrum of “umbrellainprojection”shapeswithtaperedbrightnessattheends theagedelectronstohigherfrequencies.Toexplaintheobserved expected in this scenario. For example, van Weeren et al. (2011) power-law shape of the relic spectra in the usual radio band, this triedtomodeltheSausagerelicwithashockfrontpassingthrough frequency increase must be large, requiring a large compression seedparticlesdistributedproportionallytotheICMdensity.Quot- factor (ν ∝ρ4/3 for simple assumptions about the magnetic ingtheirwork:“Oneofthemostintriguingpropertiesofthenorth- peak field compression, e.g., Markevitch et al. 2005). The “phoenix” ernrelicinCIZAJ2242.8+5301isitsverynarrowwidthandrather modeltakesfulladvantageofthefactthatadiabaticcompression uniformluminosityalongitsextent”,whichtheirsimulationscould factor can be much higher than shock compression for the same notreproduce.If,instead,theshapeoftherelictracestheunder- increaseofpressure;theformerisρ ∝ p3/4 andunlimited,while lying region of excess density of seed electrons (remaining from thelatterislimitedbyfactor4.Still,toexplaintheobservedspec- anoldradiogalaxylobe),thismaymoreeasilyexplaintheradio trum of the Coma relic, E01 considered a shock with a factor 40 morphologyoftheSausage,Toothbrush,andother,moreirregular pressure jump, corresponding to a rather high M ≈6, which is relics,fewofwhichlookliketheclean,smoothICMshockfronts much higher than the recent X-ray results for Coma (e.g Ogrean seen in X-rays. In fact, at one end of the Sausage relic, there is &Bru¨ggen2013cderiveapressurejumpofatmostafactorof5) a radio galaxy, apparently disconnected from the relic at present, andingeneralnotobservedinanyclustersofar.Forourshockat butwhichcouldinthepasthaveproducedtheunderlyingrelativis- thepositionoftheBulletrelic,thepressurejumpisatmostafactor ticmaterialfortherelic.InournewrelicintheBulletcluster,we 15(M<3.8,seeSection3.3);furthermore,adistinctcocoonatthe mayhavebeenluckytocatchthe“smokinggun”—whentheradio position of the shock would create a noticeable X-ray cavity and galaxystillhasarelativelycompactanddensecomponent,whilein makeitdifficulttoobserveacharacteristicsharpX-raybrightness otherclusters,theremaysimplynolongerbeanyvisualcluesofa edgeshowninFigure7. pastradiogalaxybecauseithasbeencompletelydisrupted. Apossibleproblemforthisscenarioishowsuchwell-defined, A more attractive mechanism is shock reacceleration of the megaparsec-sizedregionsofthethermal/relativisiticgasmixture fossil electrons mixed with the ICM (e.g., Ensslin et al. 1998; could survive the merger events. However, consider that clusters Markevitch et al. 2005; Kang & Ryu 2011; Kang, Ryu, & Jones havestrongradialgradientsoftheICMspecificentropy.Insucha 2012;Pinzke,Oh,&Pfrommer2013).Itisefficientevenforrel- stratified,convectivelystableatmosphere,arelativelysmall(com- atively low Mach numbers typically seen in clusters, and it nat- paredtotheclustersize)radiogalaxyintheperipherycanbemixed urally produces power-law synchrotron spectra (with slopes con- with the ICM by a merger. Once the merger induced disturbance sistentwiththeX-rayshockMachnumberforwell-observedand subsides, the polluted region of the ICM is likely to spread as a well-modeled shocks — i.e., those with clear geometry and both pancake, or a sausage, along an equipotential surface that corre- thetemperatureanddensityjumpsmeasuredinX-ray,e.g.,Giac- spondstoitsspecificentropy.(Thisprocessmayalsostretchtheini- intucci et al. 2008; Macario et al. 2011; Bourdin et al. 2013). So tiallyrandommagneticfieldpreferentiallyalongthesamesurface). far,simulationsofrelicformationbyreaccelerationinjectthefos- Attheseoff-centerdistances,suchsurfacesareapproximatelythe silelectronsthroughaseriesofshocksinthecluster(Pinzke,Oh, sphericalshells.Inthispicture,therelicregionBisolderthanthe &Pfrommer2013)butBonafedeetal.(2014)notedaconnection regionAandalreadyhadtimetomixandspread,whileAisrela- oftherelicinPLCKG287.0+32.9withlobesofaradiogalaxyand tivelynew—thatis,AisthesmokinggunandBissmokefrom suggestedthatthatgalaxymightbethesourceoffossilplasmafor thepreviousshot.Theperiodbetweenthedeathoftheradiogalaxy reacceleration.OurscenariofortheBulletclusterrelicissimilar; and its complete disruption should be relatively short in a merg- weextenditbyspeculatinghowsuchregionsofthepollutedICM ingcluster.Ifashockfrontpassesacrossthepollutedregionofthe maynaturallyassumethegeometricshapeoftheobservedrelics. ICM,itwillreaccelerateitsrelativisticparticlesandcreateagiant, arc-like relic. It would be very interesting to check this scenario ComparingthetwoBulletclustershocksingreaterdetailwill withnumericalsimulationswhich,sofar,primarilyassumearela- assistinourunderstandingoftherelationshipsbetweenradiorelics, tivelyuniformdistributionofseedelectrons(e.g.Vazzaetal.2012, radio halos and radio sources. Unfortunately, the present genera- Skillmanetal.2013andPinzke,Oh,&Pfrommer2013).Wealso tionofX-raytelescopesareunlikelytoprovidesignificantlymore notethatlarge,coherentperipheralrelicssuchastheSausageand informationaswearealreadyexploiting500ksofChandradata. ournewrelicarequiterareeveninmergingclusters,whichmight Onepossibilitythatmaybecomeavailableistousehighresolution beexplainedbytherequiredspatialcoincidenceofashockpassing SunyeavZel’dovich(Sunyaev&Zel’dovich1972)observationsto across a region of seed-rich plasma in the cluster periphery. Fur- searchforpressuresubstructuresatthepositionoftheshocks(e.g. thermore,thisexplanationcanjustifywhysignificantlymorepow- PlanckCollaborationetal.2013). (cid:13)c 0000RAS,MNRAS000,000–000 9 5 CONCLUSIONS BourdinH.,MazzottaP.,MarkevitchM.,GiacintucciS.,Brunetti G.,2013,ApJ,764,82 WehaveanalysedbothradioandX-rayobservationsoftheBullet BonafedeA.,IntemaH.T.,Bru¨ggenM.,GirardiM.,NoninoM., clusterandintheperipheralregionofthecluster,wefindapow- KanthariaN.,vanWeerenR.J.,Ro¨ttgeringH.J.A.,2014,ApJ, erfulradiorelic.WehavefoundasharpedgeintheX-raysurface 785,1 brightnessattheregionoftheradiorelicwhichisasignatureofa CavaliereA.,Fusco-FemianoR.,1978,A&A,70,677 likelyshockfromintheICM.Ourobservationssupportthetheory Clowe D., Bradacˇ M., Gonzalez A. H., Markevitch M., Randall thatshocksintheperipheralregionsofgalaxyclusterscancreate S.W.,JonesC.,ZaritskyD.,2006,ApJ,648,L109 radiorelics.Fromourstudyourmainconclusionsarethefollow- EnsslinT.A.,BiermannP.L.,KleinU.,KohleS.,1998,A&A,332, ing: 395 • Thelocation,spectralandpolarimetricpropertiesoftheelon- EnßlinT.A.,Gopal-Krishna,2001,A&A,366,26 gatedradioemissiontotheeastoftheBulletclusterareconsistent EnßlinT.A.,Bru¨ggenM.,2002,MNRAS,331,1011 withthepropertiesexpectedforaradiorelic. FerettiL.,GiovanniniG.,GovoniF.,MurgiaM.,2012,A&ARev, • Therelic1.4GHzpowerof2.3±0.1×1025W/Hzmakesthis 20,54 oneofthemostpowerfulradiorelicsknown. Ferrari C., Govoni F., Schindler S., Bykov A. M., Rephaeli Y., • The morphology of the Bullet cluster relic is reminiscent of 2008,SpaceSciRev,134,93 the “toothbrush-relic” associated with the galaxy cluster 1RXS Finoguenov A., Sarazin C. L., Nakazawa K., Wik D. R., Clarke J0603.3+4214(seevanWeerenetal.2012). T.E.,2010,ApJ,715,1143 • TheX-rayimageshowsanICMdensityedgeexactlytracing GiacintucciS.,etal.,2008,A&A,486,347 thetailregionoftherelic,whichsuggeststhatthereisashockfront Ginzburg,V.L.,&Syrovatskii,S.I.1964,TheOriginofCosmic atthatlocation.Ifthisisindeedashock,itsMachnumberderived Rays(Pergamon) fromtheX-raysisinagreementwiththeradiospectralindexunder JohanssonD.,etal.,2012,A&A,543,A62 theassumptionoffirstorderFermishockacceleration. SkillmanS.W.,XuH.,HallmanE.J.,O’SheaB.W.,BurnsJ.O., • Therelicconsistsofthetail,coincidentwiththeX-rayshock, LiH.,CollinsD.C.,NormanM.L.,2013,ApJ,765,21 andananomalouslybright“bulb”regionthatappearstobephys- GiovanniniG.,FerettiL.,StanghelliniC.,1991,A&A,252,528 icallyconnectedtothetail.Thebulbmaybearemnantofaradio HickoxR.C.,MarkevitchM.,2006,ApJ,645,95 galaxythathassuppliedseedelectronsforshockaccelerationinthe HongS.E.,RyuD.,KangH.,CenR.,2014,ApJ,785,133 relic.Suchascenariomaybeapplicabletootherperipheralrelics, KangH.,RyuD.,2011,Ap&SS,336,263 wheresucha“smokinggun”isnotobviousduetoagreaterageof KangH.,RyuD.,JonesT.W.,2012,ApJ,756,97 thestructureorastrongerclusterdisturbance.Thiswouldexplain LiangH.,HunsteadR.W.,BirkinshawM.,AndreaniP.,2000,ApJ, certainpeculiarfeaturesoftheperipheralrelics. 544,686 LiangH.,EkersR.D.,HunsteadR.W.,FalcoE.E.,ShaverP.,2001, MNRAS,328,L21 MacarioG.,MarkevitchM.,GiacintucciS.,BrunettiG.,VenturiT., 6 ACKNOWLEDGEMENTS MurrayS.S.,2011,ApJ,728,82 MarkevitchM.,etal.,2000,ApJ,541,542 The Australia Telescope Compact Array is part of the Australia MarkevitchM.,etal.,2002,ApJ,567,L27 Telescope National Facility which is funded by the Common- MarkevitchM.,GovoniF.,BrunettiG.,JeriusD.,2005,ApJ,627, wealth of Australia for operation as a National Facility managed 733 byCSIRO.B.M.G.acknowledgesthesupportofAustralianLaure- MarkevitchM.,2006,ProceedingsoftheTheX-rayUniverse2005, ateFellowshipFL100100114fromtheAustralianResearchCoun- 604,723 cil.M.J.-H.acknowledgessupportfromtheMarsdenFund.M.J.-H. MarkevitchM.,VikhlininA.,2007,PhysRep,443,1 acknowledgessupportfromtheMarsdenFund.WethankDouglas MatthewsT.A.,MorganW.W.,SchmidtM.,1964,ApJ,140,35 Clowe for kindly providing the R-band image and we thank the Nuza S. E., Hoeft M., van Weeren R. J., Gottlo¨ber S., Yepes G., anonymousrefereeforcomments. 2012,MNRAS,420,2006 OgreanG.,Bru¨ggenM.,SimionescuA.,Ro¨ttgeringH.,vanWeeren R.J.,CrostonJ.H.,HoeftM.,2013,AstronNachrichten,334, 342 REFERENCES OgreanG.A.,Bru¨ggenM.,vanWeerenR.J.,Ro¨ttgeringH.,Cros- AkamatsuH.,dePlaaJ.,KaastraJ.,IshisakiY.,OhashiT.,Kawa- tonJ.H.,HoeftM.,2013,MNRAS,1414 haradaM.,NakazawaK.,2012,PASJ,64,49 OgreanG.A.,Bru¨ggenM.,2013,MNRAS,1491 AkamatsuH.,KawaharaH.,2013,PASJ,65,16 OppermannN.,etal.,2012,A&A,542,A93 AkamatsuH.,InoueS.,SatoT.,MatsusitaK.,IshisakiY.,Sarazin PizzoR.F.,deBruynA.G.,BernardiG.,BrentjensM.A.,2011, C.L.,2013,PASJ,65,89 A&A,525,A104 AMIConsortium:FranzenT.M.Oetal.,2011,MNRAS,415,2699 ReynoldsJ.E.,1994,ArevisedfluxscalefortheATCompactArray BlandfordR.,EichlerD.,1987,PhysRep,154,1 ATMemo39.3/040http://www.atnf.csiro.au/observers/memos/. Bru¨ggen M., Bykov A., Ryu D., Ro¨ttgering H., 2012, Space Sci OwersM.S.,NulsenP.E.J.,CouchW.J.,MarkevitchM.,2009, Rev,166,187 ApJ,704,1349 Bru¨ggenM.,vanWeerenR.J.,Ro¨ttgeringH.J.A.,2012,MNRAS, OwersM.S.,RandallS.W.,NulsenP.E.J.,CouchW.J.,David 425,L76 L.P.,KempnerJ.C.,2011,ApJ,728,27 BrunettiG.,JonesT.W.,2014,IntJModernPhysD,23,30007 SimionescuA.,etal.,2013,ApJ,775,4 BrownS.,RudnickL.,2009,AJ,137,3158 PlanckCollaboration,etal.,2013,A&A,554,A140 (cid:13)c 0000RAS,MNRAS000,000–000 10 Shimwelletal. PinzkeA.,OhS.P.,PfrommerC.,2013,MNRAS,435,1061 PressW.H.,SchechterP.,1974,ApJ,187,425 RoettigerK.,BurnsJ.O.,StoneJ.M.,1999,ApJ,518,603 RussellH.R.,SandersJ.S.,FabianA.C.,BaumS.A.,Donahue M.,EdgeA.C.,McNamaraB.R.,O’DeaC.P.,2010,MNRAS, 406,1721 RussellH.R.,etal.,2012,MNRAS,423,236 ShimwellT.W.,BrownS.,FeainI.J.,FerettiL.,GaenslerB.M., LageC.,2014,MNRAS,440,2901 Sunyaev R. A., Zel’dovich Y. B., 1972, Comments on Astrophys andSpacePhys,4,173 Tucker W. H., Tananbaum H., Remillard R. A., 1995, ApJ, 444, 532 TuckerW.,etal.,1998,ApJ,496,L5 Vazza F., Bru¨ggen M., van Weeren R., Bonafede A., Dolag K., BrunettiG.,2012,MNRAS,421,1868 vanWeerenR.J.,Ro¨ttgeringH.J.A.,Bru¨ggenM.,HoeftM.,2010, Sci,330,347 vanWeerenR.J.,Bru¨ggenM.,Ro¨ttgeringH.J.A.,HoeftM.,2011, MNRAS,418,230 van WeerenR. J., Ro¨ttgering H.J. A., IntemaH. T., Rudnick L., Bru¨ggenM.,HoeftM.,OonkJ.B.R.,2012,A&A,546,A124 VenturiT.,GiacintucciS.,DallacasaD.,CassanoR.,BrunettiG., MacarioG.,AthreyaR.,2013,A&A,551,A24 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe author. (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.