Anomalous mapping between pionfull and pionless EFT’s Ji-FengYanga,b aDepartmentofPhysics,EastChinaNormalUniversity,Shanghai200241,China1 bKavliInstituteforTheoreticalPhysicsChina,ChineseAcademyofScience,Beijing100190,China 3 Abstract 1 0 ThepioncontributionstoleadingcontactcouplingofpionlessEFTarestudiedviainteractiveuse 2 ofnon-relativisticandrelativisticformulationsofchiraleffectivefieldtheoryfornuclearforces. n Thedominantcontributionisshowntocomefromadefiniteiteminthe2N-reducible(iteration a of OPE) component of the planar box diagram, not from the 2N-irreducible (TPE potential) J component. SuchanomalousmappingbetweenpionlessandpionfullEFT’soccursrightwithin 2 non-relativisticregimeofpionfulltheory. Thismappingperspectivemaybeabletoshedsome 1 lightonthesubtlestructuresandrenormalizationofthepionfulleffectivefieldtheoryfornuclear ] forces. h t - l c u 1. Introduction n [ Pions are the first particles known to mediate strong interactions between nucleons. After 1 quarkpictureofhadronsisestablished,theyaredegradedaseffectivedegrees–compositeparti- v clesofquarksboundwithgluons,andthelocalfieldtheoriesintermsofpionsandotherhadronic 1 degreesbecome low-energyeffectivefield theories(EFT)of QCD with chiralsymmetrybeing 5 spontaneously and softly broken that are only valid in low energy processes characterized by 6 2 scales wellbelowthe brokenscale of chiralsymmetry: Λχ 1 GeV. Fornuclearforces, how- ∼ . ever, the direct computation using QCD is in fact impossible, where effective theories are ex- 1 tremelyusefultoolsathand.Infact,sinceWeinberg’sseminalworkin1990[1],therehavebeen 0 3 greatprogressesinapplyingEFTmethodstonucleonsystemsandnuclearforcesinthelasttwo 1 decades[2–7]. In a sense, these achievementshave pretty laid down the field theoretical foun- : dationfornuclearphysics. Intriguingly,therestillremainsan unsettledissue thatisconcerned v i withthenonperturbativetreatmentofpion-exchangepotential[8–11].Twoprevailingchoicesare X adoptedin literature concerningthis issue: (1)Nonperturbativetreatment[12, 13] in numerical r approachusingfinitecut-offalaLepage[14]withoutmodifyingWeinberg’spowercounting;(2) a ’Perturbative’treatment[8,15–19]withmodifiedpowercountingrules. Thefirstchoiceisquite successful and efficient in phenomenology. While the second choice is also appealing due to its analytical tractability. The merits and discussions of variousapproachescould be found in thereviewarticles[2–7]. Theopenstatusofthisissuesuggeststhatwearestillelusiveofsome intricate structures of the chiral effective theory for nuclear forces. So, it is worthwhile to do furtherstudiesaboutthestructuresofthepionfulltheory. 1Permanentaddress. Emailaddress:[email protected](Ji-FengYang) PreprintsubmittedtoElsevier January15,2013 Theoretically,itiseasytohandlethepionlesstheorydefinedinmuchlowermomentumre- gionofnucleonscatteringwithpionsintegratedoutandexpandedintothecontactinteractions. Previously,thispionlesstheoryhasbeenstudiedwithoutdirectreferencetothepionfulloneasits adjacent’underlying’theory. (Infact,therenormalizationofthistheorycouldbereadilysettled usinga’perturbative’schemebasedonmodifiedpowercountingrules[15]. Moreover,thispion- lesstheoryisalsotractableentirelywithinnonperturbativeregimethankstothetrickintroduced bytheMarylandgroup[20]withgeneralparametrizationofdivergences[21–25].) Sinceitisan ’effective’theoryofthepionfullone,itisnaturaltoinquirewhatcouldbeseenfromstudyingthe detailedmappingbetweenthepionfullandpionlesstheories.Throughsuchefforts,itisdesirable totraceorbeinformedoftheintricacyofthepion-mediatedinteractionsandamplitudessome- how, at least some useful clues might be foundfrom this perspectivefor the intricate contents and a satisfactory or efficient organization of the EFT for nuclear forces. Therefore, we start fromthisreportontostudytheissuethroughcomputingandanalyzingthemappingormatching between pionfull and pionless theories for nuclear forces. We should remind that we are not attempting here at any new organization or power counting of the pionfull theory for nuclear forces, butlookingatthe intriguingissue froman alternativeperspectivethatmightbe helpful forasatisfactorysolution.Thuswewillmainlyworkwithconventionalchiraleffectivetheoryin bothrelativisticandnon-relativisticformulations[6]toseehowthepionlesscontactinteractions arisefromthepionexchangediagrams.Onemighthaveanticipatedthatonlythe2N-irreducible diagramsbe dominatingsuch mappinginto pionlessEFT. As will be seen shortly, such antici- pation turnsoutnotto be true dueto IR enhancementfromthe loopintegralsappearingin the iterated diagrams or convolutions. As a matter of fact, the scales involved in low-energy NN scatteringareonlymodestlyseparated,anyenhancementduetoconvolutionorloopintegration maysomehowtwistthescale hierarchythatisrequiredforalucidEFTdescription. Thus,itis worthwhile to take closer looks at how such enhancementmechanismsaffect the structures of thepionfulltheory. As a byproduct, it is also interesting to see what kind of pionless theory could be resulted from the various modified power counting schemes of pionfull theory. Thus, apart from the conventionalprescriptionof pionfullEFT, we will also computewith the prescriptionrecently proposedbyBKV[26]toexaminetheconsistencyoftheKSWpowercountingforpionlessEFT. Basingonourclosed-formsolutions,wefoundthattheempiricalEREparametersforS-channels seem to favora scenario hostingconventionalpowercounting[22–24], while the scenario with modified power counting seems to be dis- or less favored by the PSA data. To this end, it is interesting to see which or whatscenario could be justified from the mappingof pionfullonto pionlesstheory. Furthermore,itisalsointerestingtosee howthephysicalsubsetofprescription parameters[J ]arisefromthepionfulltheoryviamatching,whichisamorechallengingtaskto ··· bepursuedinfuture.Wefeelthatsuchperspectivewillalsobevaluableformanyphysicalissues that are suitable forapplying EFT in nonperturbativeregime, especially non-relativisticEFT’s with the presences of nonperturbativedivergencesand of IR enhancementfrom pinchingnon- relativisticpoles. Afterall,foreachEFTonecouldatleastfindonemostadjacent’underlying’ theorythatcontainsmorehighenergydetails. Thisreportisorganizedasfollows.InSec.2,wesetuptheconventionalpionfullandpionless Lagrangiansforouruse.TheninSec. 3,wecalculatetheleadingcontactcouplinginducedfrom loopdiagramsinpionfulltheory. Sec. 4willbedevotedtosomegeneraldiscussionsaboutour results, wherethe mappingusingBKV prescriptionwillalso becalculatedanddiscussed. The summarywillbegiveninSec. 5. 2 2. EFT’sforNNscattering 2.1. PionfullEFT Asalow-energyEFTthatinheritsthechiralsymmetryofQCD, thepionfulltheoryfornu- clearforcescouldbe giveninrelativistic aswellasnon-relativisticformulation. We will work withbothinaninteractivemanner. TherelativisticLagrangianwewillusereads(followingthe notationsofRef.[6]) = + + + , (1) EFT(π) ππ πN NN L L L L ··· 1 1 = ∂ π ∂µπ m2π2+ π4 , (2) Lππ 2 µ · − 2 π O (cid:16) (cid:17) g = Ψ¯ iγµ∂ M A γµγ5τ ∂ π+ π2 Ψ, (3) LπN µ− N − 2f · µ O ! π (cid:16) (cid:17) = Ψ¯Γ Ψ Ψ¯ΓαΨ , (4) NN α L − (cid:16) (cid:17)(cid:16) (cid:17) withΓ beingmatricesconstrainedbyLorentzandisospininvariance. ThecontactLagrangian α fornucleonsisasgiveninthepioneeringworkofWeinberg[1]. Innon-relativisticformulation, theLagrangianreducestothefollowingformusingheavybaryonformalism ~2 g = N¯ i∂ + ∇ A τ (σ~ ~)π+ (π2) N, (5) LπN 0 2M − 2f · ·∇ O = 1C N¯N 2N+ .π (6) NN 0 L −2 ··· (cid:16) (cid:17) Herethecontactcouplingsshouldassumethecontributionsfromheavymesons,etc.,andscale as: 4π C , (Λ 4,5m ) 0 ∼ M Λ ··· (π) ∼ π N (π) withΛ beingtheupperscaleofthepionfullEFT. (π) 2.2. PionlessEFT After integrating out pions and the processes above the scale of pion mass, one could fur- ther arrive at a simpler effective theory with only non-relativistic nucleon degrees and contact interactionsamongthem: LEFT(6π) = N¯ i∂0+ 2∇M2N!N− 12C0(6π)(cid:16)N¯N(cid:17)2+···, (7) with representing other contact interactions. Now these the contact couplings in pionless ··· theoryhaveincorporatedcontributionsfromthepion-exchangediagramsinpionfulltheory, C0(6π) =C0+TˆN(πN)(0,0), ···. (8) As pions are the lightest quanta for mediating strong forces between nucleons, it is natural to anticipatethatpion-exchangediagramsshoulddominatethecontributionstothepionlesscontact couplings,e.g., 4π C0(6π) ∼ MNΛ(π), ··· (Λ(6π) ∼mπ). 6 Below,wewillstudythecontributionsofthepion-exchangediagramstothepionlesscouplings andhopethatsucheffortsmayshedsomelightontheintricatestructuresofthepionfulltheory fornuclearforces. 3 3. MappingintopionlessEFT Inthepionfulltheory,allthediagramsforNNscatteringcouldbeclassifiedinto2N-irreducible and 2N-reducible ones that are traditionally defined as NN potential with pion exchangesand scatteringamplitudes,respectively. 3.1. 2N-irreduciblediagramswithpions:potential The 2N-irreducible diagrams in pionfull EFT have been computed up to next-to-next-to- next-to-leadingorderinliterature,seeRefs.[6,13,27,28]. Forourpurposebelow,itsufficesto demonstratewiththeone-pionexchange(OPE)andtwo-pionexchange(TPE)components[27]: g2 σ qσ q V (q) = A τ τ 1· 2· , (9) 1π −4f2 1· 2 q2+m2 π π V (q) = τ τ W +σ σ V +σ qσ qV , (10) 2π 1 2 C 1 2 S 1 2 T · · · · 1 48g4m4 W = 4m2 5g4 4g2 1 +q2 23g4 10g2 1 + A π L(q) C −384π2f4 π A− A− A− A− w2 + 6m2 1π5g4 6g(cid:16)2 1 +q2 23(cid:17)g4 1(cid:16)0g2 1 lnmπ (cid:17) π A− A− A− A− µ h (cid:16) (cid:17) (cid:16) (cid:17)i q2 +4m2 4g4 +g2 +1 + 5g4 26g2 +5 , (11) π A A 6 A− A ) (cid:16) (cid:17) (cid:16) (cid:17) 1 3g4 V = V = A L(q), (12) T −q2 S −64π2f4 π where w w+q L(q) ln , w 4m2+q2, q q, q p p, (13) ≡ q 2mπ ≡ q π ≡| | ≡ − ′ with p,p beingtheexternalmomentaforanucleon.Below,therenormalization-scale-dependent ′ terms( lnmπ)willbediscarded(byputtingµ=m )asinRefs.[13,28],asthequalitativestatus ∝ µ π wouldremainthesame. Besidesthis,theW ofTPEgiveninRef.[13]onlycontainsthetermin C thefirstlineofEq.(11). Now,weperformthelow-energyexpansiontoextractcontributionstothecontactcouplings in pionless EFT. We focus on C (the superscript ’(π)’ will be dropped henceforth), to which 0 6 OPEcontributesnothingduetothederivativeπNcoupling!WhiletheTPE’scontributiondiffers alittleacrossdifferentversions: g4m2 4π 32π3f4 V(KBW) : C(KBW) = A π, Λ(KBW) = π , (14) 2π 0τ −8π2fπ4 (6π,τ) ≡−MNC0(KτBW) g4AMNm2π g4m2 4π 48π3f4 V(EGM) : C(EGM) = A π , Λ(EGM) = π , (15) 2π 0τ −12π2fπ4 (6π,τ) ≡−MNC0(EτGM) g4AMNm2π with the scale Λ thusextractedbeingoforder103 MeV (see Table 2), muchlargerthanas the upperscaleofpionlessEFTthatisoforderm 2. Accordingtothepowercountingrulesofpio- π nfulltheory,theconstantsgivenin Eqs.(14,15) willbejusttheleadingcontributiontopionless 2Weonlyextractedthetermsoforderg4AforqualitativedemonstrationasgA >1.2andincludingthetermsoflower gApowerwouldnotalterthemagnitudeorderofourresults. 4 C from2N-irreduciblediagramsorpion-exchangepotential. Comparingwithgeneralexpecta- 0 tionaboutpionlessC ,thiscontributionistoosmall. Thatmeans,thedominantcontributionto 0 thepionlesscouplingC couldnotbefromsuchirreduciblediagrams. Therefore,the dominant 0 contributionsfrom pions to pionless C could only come from the diagramswith iterations of 0 pion-exchangepotential,i.e.,the2N-reduciblediagrams. Thesimplestcaseistheonce-iterated OPEdiagram,whichhasbeencomputedlongagobytheMunichgroup[27]. Inthisreport,we willreanalyzeitfromthemappingperspectivethroughan’interactive’useofthree-dimensional non-relativisticformulationandfour-dimensionalrelativisticformulation. 3.2. 2N-reduciblediagramswithpions: 3-dimensionalnon-relativisticcalculation We will basically adopt the parametrization given in Ref.[6] in our calculations. In non- relativisticformulation,theonce-iteratedOPEdiagramreads g4 d3l σ q σ q σ q σ q T1(iπt)(p,p′)= 16Afπ4(3−2τ1·τ2)Z (2π)3 q21+1m·2π 1q222+· m12π 1E·N;p2−2Ml·2N +2 iǫ , (16) (cid:16) (cid:17)(cid:16) (cid:17)(cid:16) (cid:17) with q = p+l, q = p +l, E p2+M2. 1 2 ′ N;p ≡ q N ToextractthecontributiontoC ,wecomputethefollowing 0 g4M T(it)(0,0)= A N(3 2τ τ )I (0), (17) 1π − 16f4 − 1· 2 4 π d3l l2 I (0) , (18) 4 ≡Z (2π)3E4 π;l withE l2+m2. Instandarddimensionalandcutoffschemes,wehave π;l ≡ π p 3m π, (dimensional) − 8π I4(0)= 3mπ + Λ , (cutoff) (19) − 8π 2π2 AswillbeseeninSec.3.3,thelineardivergencehereisanartifactintroducedbynon-relativistic approximation.So,wetakethat 3g4M m T(it)(0,0)= A N π(3 2τ τ ). (20) 1π 128πf4 − 1· 2 π Thisisessentiallywhattheonce-iteratedOPEdiagramcontributestotheleadingcouplingC in 0 pionlesstheory,thecontributiontoI (0)frompionlessregionisnegligible: 4 d3l l2 10 3π 10 3π I4(6π)(0)≡Z(0,mπ) (2π)3Eπ4;l = 16−π2 mπ =ε(46π)I4(0), (cid:12)(cid:12)ε(46π)(cid:12)(cid:12)= 6−π ≈3.05×10−2 ≪1. (21) (cid:12) (cid:12) (cid:12) (cid:12) Obviously,thesuppressionofthecontributionfrompionlessrangeisduetothederivativepion- nucleoncoupling. 5 Tobemoreaccurate,onemayexcludethis3percentinidentifyingthedominantcontribution toC : 0 C0(it)+C0(iτt)τ1·τ2 ≡T1(iπt)(0,0) 1−ε(46π) (22) (cid:16) (cid:17) 9g4M m 3g4M m C(it) = A N π 1 ε(6π) , C(it) = A N π 1 ε(6π) , (23) 0 128πf4 − 4 0τ − 64πf4 − 4 π (cid:16) (cid:17) π (cid:16) (cid:17) withthesuperscript”(it)”indicatingthecontributionfromtheonce-iteratedOPEdiagram. Fol- lowingthestandardparametrization:C = 4πM 1Λ 1,wehave 0 ± N− −(π) 6 512π2f4 256π2f4 Λ(it) = π , Λ(it) = π , (24) (6π) 9g4AMN2mπ 1−ε(46π) (6π,τ) 3g4AMN2mπ 1−ε(46π) (cid:16) (cid:17) (cid:16) (cid:17) which is of the order of pion mass provided the popular choices for M , m , f and g are N π π A made. In table 1 and table 2, the 3 percentdeductionis notincludedas it couldnotaffect our conclusions. 3.3. 2N-reduciblediagramswithpions: 4-dimensionalrelativisticcalculation Inrelativisticformulation,theonce-iteratedOPEdiagramiscontainedinthefollowingplanar boxdiagram: g4 d4l 1 1 T(pb)(p,p) = A u¯ (p)( q )γ5τb q γ5τau (p) ′ 16fπ4 Z (2π)4 q21−m2π q22−m2π 1 ′ −6 2 16k−MN 6 1 1 1 (cid:16) (cid:17)(cid:16) (cid:17) 1 u¯ ( p)q γ5τb ( q )γ5τau ( p) (25) × 2 − ′ 6 2 2k M −6 1 2 2 − 6 ′− N withmomentumflowschosenasinRef.[6]:q =(l0,p l), q =(l0,p l), k=(E l0,l), k = 1 2 ′ N;p ′ − − − (E +l0, l). N;p − Again,weareinterestedinthesituationwhenexternalmomentaarezero,namely, ig4 T(pb)(0,0)= A (3 2τ τ ) 4M2I I +16M4I 4M2(I +I ) , (26) 16fπ4 − 1· 2 h N 0− 2 N 2+−− N 2+ 2− i where d4l 1 d4l l2 d4l l2 d4l l2 I , I 0 , I 0 , I 0 , (27) 0 ≡Z (2π)4A2π 2 ≡Z (2π)4A2π 2+− ≡Z (2π)4A2πA+A 2± ≡Z (2π)4A2πA − ± with A l2 m2 +iǫ, A l2 2M l +iǫ. NotethatI isdefinite,therestcarryatmost π ≡ − π ± ≡ ± N 0 2+− logarithmicdivergence.Indimensionalscheme,wehave i im2 I = [Γ(ǫ) ℓ ], I = π [Γ(ǫ)+1 ℓ ], (28) 0 (4π)2 − π 2 2(4π)2 − π i 6̺+(3 4̺)ln̺ (3 10̺)arctan 4̺ 1 I = Γ(ǫ)+1 ℓ + − + − − , (29) 2± 4(4π)2 − N 2̺2 ̺2 4̺ p1 i 1 (1 ̺)ln̺ (2 6̺)arctan 4̺ 1p − I2+− = 4(4π)2 M2 −̺ +2+ − ̺ 4̺ p1 − , (30) N 6 p − withℓ lnm2π,ℓ ln MN2,̺ MN2. Then,wehave π ≡ µ2 N ≡ µ2 ≡ m2π g4 T(pb)(0,0) = A (3 2τ τ ) α M2 +α M m +α m2 , (31) −128π2f4 − 1· 2 N N Nπ N π π π π h i with (2 6̺)arctan 4̺ 1 α Γ(ǫ)+3 ℓ , α − − , N ≡ − N Nπ ≡ ̺ 1 (4̺p) 1 − − Γ(ǫ)+1 ℓ 8̺ 3 p (10̺ 3)arctan 4̺ 1 α − π 3+ − ln̺+ − − . (32) π ≡ − 4 − 2̺ ̺ 4̺ 1p − p Obviously, the third term ’α m2’ is what one would expect for a standard TPE componentof π π NN potential. The second term ’α M m ’ is a definite (or nonlocal) term that comes from Nπ N π I ,itwillprovetobejustthedominantcontributiontothepionlessC weareafter,seebelow. 2+ 0 − However,we are notreadyyetto identifythe aboveamplitude as contributionsto the pionless couplingC : Thereisan’offensively’largelocalterm’α M2’thatiscompletelyoutofcontrol 0 N N in the realm of pionfull EFT for NN forces. To resolve this problem, we first observe that the pionfull theory actually lives in non-relativistic regime as Λ lies well below M . Then, (π) N after contourintegration, M activates a division of loop momentumspace into a low or non- N relativisticregionandahighorrelativisticregion:Inthelowregionwherenon-relativisticregime islegitimatelydefined,expansionscouldbesafelydonewithallmomentaandm beingsmaller π scales against M ; While in the highregion,onlyexternalmomentaand m aresmallerscales N π thatfacilitateexpansions,resultinginlocaloperatorsortermsoflightdegreeswithlargefactors of M . The high region and those large local operators are automatically discarded in non- N relativistic regime. Thus, ’α M2’ comes from the high region where the pionfull EFT is no N N longervalidandhenceshouldbesubtractedfromthetheoryatall. LetusillustratewiththedefiniteintegralI thatinterestsusmost. Toenternon-relativistic 2+ regime,onefirstpicksupthelow-lyingpolesat−E M l2 (nucleon)and E (pion)in N;l − N ≈ 2MN π;l contourintegrationandthenexpandtheresultantsintermsof1/M inthelowregion. ForI , N 2+ − wehave: d3l dl l2 i(4M I +I ) I 0 0 = N N π , (33) I2+−|NR ≡dZ3l (2lπ2)3=II (02)π, AπIA+A−(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)NdR3l m4π+644Mm2πN4l2−4MN2Eπ2;l, (34) N ≡Z (2π)3E4 4 π ≡Z (2π)3 E5 π;l π;l with I and I denotingtheoutcomesfromthelow-lyingnucleonandpionpoles,respectively. N π From Eqs.(18,19,30,33), we could find that, I (0) actually comes from the following nonlocal 4 terminI : 2+ − 1 (2 6̺)arctan 4̺ 1 1 3m 64π2M2 × − ̺ 4̺ p1 − = 16M3 (− 8ππ 1+o ̺−21 ). (35) N − N h (cid:16) (cid:17)i p Here, it is transparent that the linear divergence in I (0) is an artefact generated in the non- 4 relativistictreatmentofadefinite(nonlocal)terminrelativisticformulation,justifyingourchoice 7 foritsvalueinSec. 3.2. Inthemeantime,thefollowingtermsareautomaticallydiscarded: i 1 δI2+− = I2+−− I2+−|NR = 4(4π)2 M2 [Γ(ǫ)−ℓN] 1−̺−1 +2+2̺−1+o ̺−23 , (36) N n (cid:16) (cid:17) (cid:16) (cid:17)o whicharejusttheoutcomesofthenucleonpolesatE M integratedoverthehighregionand N N ± somerelativisticcorrections.Collectingallsuch’discarded’termsforT(pb)(0,0),wehave g4 ∆ˇT(pb)(0,0)= A (3 2τ τ ) (Γ(ǫ) ℓ ) M2 4m2 +3M2 +o ̺ 1M2 , (37) −128π2f4 − 1· 2 − N N − π N − N π n (cid:16) (cid:17) (cid:16) (cid:17)o which obviously includes the first term ’α M2’ of T(pb)(0,0), fulfilling our earlier statement N N aboutitsdisposition.Theabovederivationmakesitveryclearthatthedisposalofthelarge(local) termsofnucleonmasssquaredisnothingbutaninherentpartoftheoperationforenteringnon- relativisticregime,aninterestingfactlendingitselftounderstandingtheproposalforpreserving theconventionalpowercountinginrelativisticbaryonχPT[29]. Therefore, in non-relativistic regime, the box diagram decomposes into 2N-reducible and 2N-irreduciblecomponentsasbelow: T(pb)(0,0) =T(pb)(0,0) ∆ˇT(pb)(0,0)=T(it)(0,0)+V(pb)(0), (38) NR − 1π 2π (cid:12) (cid:12) with (cid:12) g4 15 V(pb)(0)= A (3 2τ τ )m2 4 [Γ(ǫ)+1 ℓ ] (39) 2π 128π2f4 − 1· 2 π( − 4 − π ) π beingthe(bare)2N-irreduciblecomponent: partoftheTPEpotential[6,27]as thecrossedbox diagramisnotincludedhere.Obviously,V(pb)(0)istheoutcomeofthepionpolewhileT(it)(0,0) 2π 1π istheoutcomeofthelow-lyingnucleonpole. ThedivergenceinV(pb) isnowproportionaltom2 2π π andcouldbesubtractedusingthefollowingchiralcounterterms 15g4 δV(pb)(0)= A (3 2τ τ )m2[Γ(ǫ)+1 ℓ ]. (40) 2π 512π2f4 − 1· 2 π − π π Now we arrive at the finite contributions to the pionless coupling C from the planar box 0 diagramthatalsodecomposeintotwocomponents 3g4M m C(it)+C(it)τ τ T(it)(0,0)= A N π(3 2τ τ ), (41) 0 0τ 1· 2 ≡ 1π 128πf4 − 1· 2 π g4m2 C(irr)+C(irr)τ τ V(pb) (0)= A π (3 2τ τ ), (42) 0 0τ 1· 2 ≡ 2π;R 32π2f4 − 1· 2 π withtheratio3 C(it) 3π 3πM 0 = ̺12 = N 16.0324 1 (43) C(irr) 4 4mπ ≈ ≫ 0 3TheprescriptiondependenceofV(pb) shouldnotaffectthisratiomaterially. 2π;R 8 Table1:VariouscontributionstoC0τandΛ(π,τ) 6 OPE TPE(KBW) TPE(EGM) ITERATION τ g4m2 g4m2 3g4M m C 0 A π A π A N π 0τ −8π2f4 −12π2f4 − 64πf4 π π π 32π3f4 48π3f4 256π2f4 Λ π π π (6π,τ) ∞ g4AMNm2π g4AMNm2π 3g4AMN2mπ demonstratesclearlythedominanceofthe2N-reduciblecomponentwithinplanarboxdiagram. In relativistic formulation, there would be small relativistic corrections that will not alter this dominance. The crossed box diagram contains no contribution to C except a 2N-irreducible 0 piecethatbelongstoTPE[6]. Here,someremarksareinorder:(1)ThedominantingredientofthecouplingC inpionless 0 EFTactuallycomesasfromadefiniteandhencenonlocalitemintheboxdiagraminrelativistic formofpionfulltheory.Thenon-relativisticdecompositionprocedurecouldatmostbringabout somesub-leading’corrections’. Thesame mightalso happen tohigherpionlesscouplings. (2) Through ’interactive’ use of non-relativistic (lower) and relativistic (higher) theories, we also identifiedtherationalefordiscarding’offensively’largetermspresentintherelativisticformu- lationbyexploitingtheirvirtues. Recently,thevirtuethatrelativisticformulationembodiesless UVdivergenceshasalsobeenexploitedinRef[30],resultinginamodifiedWeinbergapproach fornuclearforceswhereformerpathologiescouldberemovedordiminished.(3)Therefore,the followingstrategyisadoptedinourderivations: a)Inrelativisticform,weseparateoutanddis- cardthehighregioncontributionstostayinnon-relativisticregime4,therestwillbechiraldiver- gences(2N-irreduciblediagrams)thatcouldbesubtractedusingcountertermsofchiraleffective theory; b) In non-relativisticform, the new (power) divergencesin the 2N-reducible diagrams areartefactofnon-relativistictruncationandhencetreatedwithdimensionalregularization,the 2N-irreducibleonesfulfillstandardchiralperturbationsubtractions. ThevariouscontributionstothepionlessC aresummarizedintable1andtable2. Intable 0τ 2,wealsolistedthescaleextractedfortheisospin-independentcouplingC(it) inthelastcolumn. 0 4. Regiondivision,enhancementandmapping 4.1. Generalreasoning In relativistic formulationofany EFT, loopmomentumscale extendsto infinity. However, thevastregionabovetheupperscaleofEFT,[Λ , ),isactuallysuperfluous.Fortheorieswith (EFT) ∞ 4Discardingsuchcontributionsandthishighregionentirelyisinfactapplyinga’projection’operationtotherela- tivisticformulationtosingleoutnon-relativisticcomponentsforfurthertreatment,notthestandardrenormalizationthat leavesquitesomeambiguities. 9 Table2:ValuesofΛ(π,τ)(andΛ(π))inMeVwith(fπ,mπ,MN)=(92.4,138,939)MeV. 6 6 g TPE(KBW) TPE(EGM) ITERATION ITERATION A τ 1.26 1604.65 2406.98 200.18 133.45 ( 11.63m ) ( 17.44m ) ( 1.45m ) ( 0.97m ) π π π π ∼ ∼ ∼ ∼ 1.29 1460.51 2190.77 182.20 121.46 ( 10.58m ) ( 15.88m ) ( 1.32m ) ( 0.88m ) π π π π ∼ ∼ ∼ ∼ 1.32 1332.20 1998.29 166.19 110.79 ( 9.65m ) ( 14.48m ) ( 1.20m ) ( 0.80m ) π π π π ∼ ∼ ∼ ∼ lightmassscales,thevastsuperfluousregionisofnoharm.Thingsbecomecomplicatedwhenan EFTactuallylivesinnon-relativisticregime:Offensivelylargetermshavetobeseparatedoutand subtractedtostayinnon-relativisticregimeandintricaciesariseduetotheinfraredenhancement innon-relativisticregime. Inthepionfulltheoryfornuclearforces,thepionsmassfacilitatesa furtherdivisionofthelowregion’U ’intopionlessregion’U ’anditscomplement’U˜ ’: (π) (π) (π) 6 U =U U˜ , U 0,Λ , U˜ Λ ,Λ . (44) (π) (π) (π) (π) (π) (π) (π) (π) 6 ∪ 6 ≡ 6 ≡ 6 (cid:2) (cid:1) (cid:2) (cid:1) IntricaciesactuallylieinU˜ ,wherelow-lyingnucleonpolesdominatethecontributionstopion- (π) lesscouplingsandgiverisetoinfraredenhancementatleastinplanarboxdiagram5.Ofcourse,it remainstoseehowhigherdiagramsbehaveinthisregion,especiallyhowthelow-lyingnucleon polesinthesediagramscontributetopionlesscouplings! Technically, the dominance of iterated OPE over TPE (and of course, OPE) is due to the dominance of 4M I over I , which in turn comes from the fact that the low-lying nucleon N N π polestendto pinch. We also needthatthecontributionfromthepionlessregionto I isnegli- N gible,whichisguaranteedbythederivativecouplingbetweenpionandnucleons. Thus,forthe anomalousdominanceofreduciblediagramstohappen,weneed: (1)non-relativisticregimeto make the low-lyingnucleonpoles tend to pinch; (2)derivativecouplingbetween pion and nu- cleonsto suppressthe contributionsfrompionlessregionso thatthepionfullregionU˜ holds (π) thebulkcontributions,(3)clearseparationofmassscalestomaketheenhancementmaterialize, i.e., √̺ 1. Of course, there is a gross prerequisite here: the large relativistic components ≫ must be entirely excluded or discarded in the first place. Otherwise, the whole theory will be overwhelmedby the high region, which is totally unacceptable. Unless profoundchanges are madetosubstantiallyinvalidatetheabovethreefeaturesorconditions,thedominanceofiterated 5Literally,ashighandlowregionsareseparatedbynucleonmassMN,anextraregionδUlow=[Λ(π),MN)isimplictly includedintheloopintegration innon-relativistic decomposition. Wearenotclearyettherolesplayedbythisextra region. 10