ebook img

Anisotropic exchange within decoupled tetrahedra in the quantum breathing pyrochlore Ba3Yb2Zn5O11 PDF

4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anisotropic exchange within decoupled tetrahedra in the quantum breathing pyrochlore Ba3Yb2Zn5O11

Anisotropicexchangewithindecoupledtetrahedrainthequantumbreathingpyrochlore Ba Yb Zn O 3 2 5 11∗ J. G. Rau,1, L. S. Wu,2, A. F. May,3 L. Poudel,2,4 B. Winn,2 V. O. Garlea,2 A. Huq,5 P. † ‡ Whitfield,5 A. E. Taylor,2 M. D. Lumsden,2 M. J. P. Gingras,1,6,7 and A. D. Christianson2,4 1DepartmentofPhysicsandAstronomy, UniversityofWaterloo, Ontario, N2L3G1, Canada 2QuantumCondensedMatterDivision,OakRidgeNationalLaboratory,OakRidge,TN-37831,USA 3MaterialsScience&TechnologyDivision,OakRidgeNationalLaboratory,OakRidge,TN-37831,USA 4DepartmentofPhysics&Astronomy, UniversityofTennessee, Knoxville, TN-37966, USA 5Chemical&EngineeringMaterialsDivision,OakRidgeNationalLaboratory,OakRidge,TN37831,USA 6Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada 7CanadianInstituteforAdvancedResearch,180DundasStreetWest,Suite1400,Toronto,ON,M5G1Z8,Canada 6 (Dated:January19,2016) 1 0 ThelowenergyspinexcitationspectrumofthebreathingpyrochloreBa3Yb2Zn5O11hasbeeninvestigated 2 withinelasticneutronscattering. Severalnearlyresolutionlimitedmodeswithnoobservabledispersionare observedat250mKwhile, atelevatedtemperatures, transitionsbetweenexcitedlevelsbecomevisible. To n gaindeeperinsight,atheoreticalmodelofisolatedYb3+tetrahedraparametrizedbyfouranisotropicexchange a J constantsisconstructed.Themodelreproducestheinelasticneutronscatteringdata,specificheat,andmagnetic susceptibilitywithhighfidelity.ThefittedexchangeparametersrevealaHeisenbergantiferromagnetwithavery 6 largeDzyaloshinskii-Moriyainteraction.Usingthismodel,wepredicttheappearanceofanunusualoctupolar 1 paramagnetatlowtemperaturesandspeculateonthedevelopmentofinter-tetrahedroncorrelations. ] l e Frustratedorcompetinginteractionshavebeenrepeatedly O - Ba r found to be at the root of many unusual phenomena in con- t Zn s densed matter physics [1–5]. By destabilizing conventional Yb . t long-rangeorderdowntolowtemperature,frustrationinmag- a m neticsystemscanleadtomanyexoticphases;fromunconven- tional multipolar [6, 7] and valence bond solid orders [1, 4] - d todisorderedphasessuchasclassicalandquantumspinliq- n uids [1, 4]. Significant attention has been devoted to under- o standinggeometricfrustrationwhereitistheconnectivityof c thelatticethathinderstheformationoforder. Recently,how- [ ever, magnets frustrated not by geometry but by competing 1 interactionshavebecomeprominentforthenovelbehaviors v thattheyhost.Suchcompetinginteractionsmightbeadditional 4 0 isotropicexchangeactingbeyondnearestneighbors[8–10],bi- 1 quadraticorothermultipolarinteractions[11]. Onepossibility 4 attractingeverincreasinginterestisthatcompetingstrongly 0 anisotropicinteractionsmaystabilizeawiderangeofunusual FIG.1. CrystalstructureofBa3Yb2Zn5O11(cubicspacegroupF4¯3m, . no.216).EachYb3+ionispartofalargeandsmalltetrahedroninthe 1 phenomena. 0 breathingpyrochlorelattice. 6 Anexcitingresearchdirectioninthelattercontextconcerns 1 itselfwithso-called“quantumspinice”[12]. Thisquantum : spinliquidcanbestabilizedbyperturbingclassicalspinice liquids[22,23]. Inmanyofthesecompounds,thephysicsis v i withadditionalanisotropictransverseexchangeinteractions verydelicate,showingstrongsampletosamplevariations[24] X that induce quantum fluctuations. Particularly interesting is orsensitivitytoverysmallamountsofdisorder[25,26]. Con- r thepotentialrealizationofsuchphysicsintherare-earthpy- sequently,anaccuratedeterminationoftheeffectivemodelis a rochloresR M O [13–15],whereRisatrivalent4f rare-earth crucialinmakingdefiniteprogressinthisarea. Thisisparticu- 2 2 7 ion,andMisanon-magnetictetravalenttransitionmetalion, larlytrueincaseswheretheidealizeddisorder-freematerial suchasM=Ti,SnorZr. Thesematerialscanbedescribedin mayfinditselfinthevicinityofatransitionbetweencompeting termsofpseudospin-1/2degreesoffreedominteractingvia semi-classicalgroundstates[18,27,28] anisotropicexchanges[12,15],wheretheeffectivespin-1/2 Given the critical importance played by the precise value mapsthestatesofthecrystal-electricfieldgrounddoubletof oftheanisotropicexchanges,anumberofexperimentshave therare-earthion. Thesematerialsdisplayawealthofinterest- beenaimedatdeterminingthosecouplings[15,16]. Thereis, ingphenomena,fromthepossibilityofquantum[16–18]order- unfortunately,muchdifficultyinobtainingaccuratevaluesfor by-disorderphysicsinEr Ti O [19],unconventionalordered thesecouplingsstemmingfromtwokeylimitations. First,only 2 2 7 states[20,21]aswellasseveralcandidatesforquantumspin approximatemethodsareavailabletorelatethemodeltoex- 2 periment,restrictingcomparisonstoregimeswherethetheory peratures,possiblyleadingtointerestingnewphysics[40–44] becomescontrolled,suchasinhighmagneticfield[15,16,29] inthismaterial. orathigh-temperature[29–32]. Second,toavoidover-fitting Experimental results: Polycrystalline samples of BYZO theexperimentaldata,onemustworkwithareasonablenum- were synthesized by solid-state reaction in Al O cru- 2 3 beroffittingparameters;forexamplerestrictingtoasubsetof cibles[45]. Theresultingsampleswerecharacterizedbyspe- theallowedinteractionsbyignoringinteractionsbeyondnear- cificheatandmagnetizationmeasurements[45]. Thestructure est neighbors or possible multi-spin interactions [19]. Even wasstudiedvianeutronpowderdiffractionutilizingthePOW- inYb Ti O ,wherethelatterconcernislargelyabsent,there GEN[47]diffractometerattheSpallationNeutronSourceat 2 2 7 currentlyremainsnoconsensusonthevaluesoftheanisotropic OakRidgeNationalLaboratory[45].Thesemeasurementscon- exchange parameters [15, 27]. At the present time, a refer- firmthepreviouslyreportedcubicstructure[33,48,49](space encerare-earthpyrochlore-likecompoundwithsolelybilinear groupF4¯3m,no. 216)withlatticeparametera=13.47117(3) anisotropicinteractionsandforwhichessentiallyexactmeth- at10Kanda=13.48997(3)at300K. ods canbe employed to compare withexperimentaldata, is Toexplorethelowenergyspectrumofmagneticexcitations badlyneededtocementthevalidityoftheeffectivespin-1/2 in BYZO, INS data was collected using the HYSPEC spec- descriptionofsuchmaterials. trometer[50]attheSpallationNeutronSourceatOakRidge InthisLetter,westudyBa Yb Zn O (BYZO),aso-called NationalLaboratory. Measurementswereperformedat0.25, 3 2 5 11 breathingpyrochlore(BP)compound[33,34],whichprovides 10,and20Kutilizinga3Herefrigerator,withfixedincident anidealplatformforunderstandingsuchanisotropicexchange neutronenergiesofEi=3.8 meV,7.5 meVand15 meV. models. As shown in Fig. 1, BYZO consists of small tetra- INSmeasurementswithEi=3.8meVat0.25and20Kare hedra with a short nearest-neighbor bond distance r 3Å showninFig.2. Thedataat0.25K(Fig.2(a)and(b))exhibits < ∼ connectedbylargetetrahedrawithsizer 6Å. Becauseof severalwell-definedmodeswithnoobservabledispersion. The > ∼ thelargeratior /r 2,theinter-tetrahedroncouplingsare Q-dependence of the inelastic scattering intensity exhibits > < ∼ | | expected to be small compared to the intra-tetrahedron cou- a broad peak centered near Q = 1.3Å−1 (see Fig. 2(b) and | | plings,leadingtoeffectivelydecoupledsmalltetrahedra. This theSupplementalMaterial[45]). Thewidthinenergyofthe canbecomparedtotheCr-basedBPcompounds,wherethe modes is close to instrumental resolution [45]. At elevated smallandlargetetrahedraonlydifferinsizeby 5%[35–37]. temperatures(Fig.2(b)and(d)),threenewexcitationsbecome ∼ TocharacterizeBYZOspectroscopically,wehaveinvestigated visibleresultingfromtransitionsbetweenexcitedstates. itslowenergyspinexcitationsusinginelasticneutronscatter- Theoriginoftheobservedlowenergyexcitationsappearsto ing(INS). Weconfirmthepictureofnearlyindependenttetra- bemodesoriginatingfromdecoupledYbtetrahedra. Several hedra,seeingnearlyresolutionlimiteddispersion-lessmodes piecesofevidencesupportthisassertion. Lowlyingcrystal atlowtemperatures. ThisINSdata,combinedwiththether- field levels can be excluded as the origin of these modes as modynamicmeasurementsofRef.[33],allowsforacomplete threehigherenergycrystalfieldlevelsareexperimentallyob- andunambiguousdeterminationofthetheeffectivemodelfor served(themaximumnumberforYb3+)withthelowestlying BYZO.Wefindthatasingletetrahedronpseudo-spinmodel levelat 38meV[34,45]. Themagneticsusceptibilityand ∼ canquantitativelyaccountforallofthecurrentexperimental specificheatdatadonotshowanysignsoflongrangemagnetic data on BYZO, determining the four anisotropic exchanges orderdownto0.38K[33,45]thatwouldindicatecorrelations as well as the g-tensor. In addition to the antiferromagnetic betweenthesmalltetrahedra. Examinationoftheelasticscat- HeisenbergexchangepostulatedinRef.[33],wefindthatsig- teringat0.25Kisconsistentwiththisconclusion,revealingno nificantDzyaloshinskii-Moriya(DM)exchangeisneededto indicationoflongrangemagneticorder.Finally,thelackofdis- obtainthecorrectlevelstructuredeterminedfromINS. The persionsuggeststhatthesemodesariseprimarilyfromisolated fittedexchangeparametersarefarfromthespinicelimitre- tetrahedraandthattheinteractionsconnectingthetetrahedra centlyconsideredinRef.[38]orthepurelyHeisenberglimits areweak. Wenotethatthereisaweakandbroadfeatureat studiedinRef.[39]. Instead,wefindthegroundstateofeach 1meV. Wehavebeenunabletoidentifytheoriginofthis ∼ tetrahedronisdoublydegenerate,consistentwiththeresidual feature,butnotethatithasa Q-dependence[45]distinctfrom | | entropyobservedexperimentallyatT 300mK[33]. These thatoftheothernearlyresolutionlimitedmodes. ∼ E-doublets are nearly non-magnetic, carrying both a scalar Theoreticalmodel: Wenowusetheseexperimentalobser- spin-chiralityaswellasoctupolar,all-in/all-outmoments. The vations,alongwiththethermodynamicdatafromRef.[33]to stateofBYZOatcurrentlystudiedbasetemperaturesisthus constructamodelofBYZO. Giventhedispersion-lessmodes a type of “octupolar paramagnet” without significant inter- seenintheINS,andthelargeratior /r 2betweenthelarge > < ∼ tetrahedroncorrelations. Notwithstandingthebroadagenda andsmalltetrahedronsizes,weexpectisolatedYb tetrahedra 4 ofaccuratelydeterminingtheanisotropicexchangesinrare- toprovideaverygooddescriptionofthelowenergyphysics. earthpyrochlorematerials,thecompletecharacterizationofthe EachofthefourYb3+ ionshasaHund’srulegroundstateof single-tetrahedronmodelshouldprovideausefulguideforfur- 2F ,withtheJ =7/2manifoldstronglysplitbytheC (3m) 7/2 3v therexperimentalstudiesofBYZOandotherBPs.Specifically, crystallineelectricfieldenvironment. Sincethisenergyscale weestimatethattheinter-tetrahedroncorrelationscouldbegin isverylarge, 38meV[34],relativetotheexpectedscaleof ∼ tosetinbelow500mK,attheedgeofcurrentlyexploredtem- theintra-tetrahedroninteractions,onlythegrounddoubletis 3 FIG.2. INSdata(E =3.8meV)andcomparisontoourtheoreticalmodelat(a-c)0.25Kand(d-f)20K.Theoveralltheoreticalintensityscale i wasfitusingtheconstantwavevectorcut(a)at0.25K. AGaussianbroadeningwithenergydependencefollowingtheexperimentalenergy resolutionfunction[45]wasincludedinthetheoreticalcalculation.(a,d)CutoftheINSdataaveragedoverthewindow1.25Å−1< Q <1.35Å−1 | | at(a)0.25Kand(b)20K.ResultsformodelofEq.(2)withfittedparametersofEq.(3)arealsoshown.(Inset,a)Anillustrationofthelevel structureofthesingle-tetrahedronmodelandthepositionsofthetransitionsfromthegrounddoubletintotheexcitedstates. (b,e)Intensity mapofthepowderaveragedINSdataat(c)0.25Kand(d)20K.Theexcitationsarenearlydispersionfreeoverthefull Q range.(c,f)Model | | calculationsfortheparametersofEq.(3)areshownat(e)0.25Kand(f)20K.TheYb3+formfactorwasevaluatedinthedipoleapproximation, asgiveninRef.[46]. relevantatlowtemperatures. Thetwostatesofthisdoublet ispartlydeterminedbytetrahedralsymmetry.Thefour-pseudo- defineaneffectivepseudo-spinSiateachofthefourYb3+sites. spinstatesbreakintotheirreduciblerepresentationsA2⊕3E⊕ Thispseudo-spinisrelatedtothemagneticmomentµ ateach T 2T undertheactionofthetetrahedralgroup. Thisgives i 1⊕ 2 sitethroughtheg-factors,g andg ,presentduetothelocal alevelstructureofasinglet(A ),threedoublets(E)andthree z 2 ± C symmetry. Explicitly, triplets(T orT ). Fromtheobservedresidualentropy[33],it 3v 1 2 seemsplausiblethatthegroundstateofthetetrahedronisan µi ≡µB g± xˆiSix+yˆiSiy +gzzˆiSiz , (1) Edoublet,whichgivesanentropyofkBln(2)/4∼0.1733kB/ where(xˆi,yˆi,zˆi)aret(cid:104)he(cid:16)localaxesof(cid:17)tetrahedr(cid:105)onsitei [45]. Yb3+. Regardlessofthedetailedcompositionofthegrounddoublet, Best fit parameters: The model of Eq. (2), supplemented sinceJ =7/2,theinteractionsbetweentheYb3+areexpected withthedefinitionofthemomentinEq.(1),isdeterminedby tobeanisotropicand,apriori,notnecessarilyneartheIsing the six parameters J , J , J , J , g and g . To fix these zz z z or the Heisenberg limit [51]. Symmetry strongly constrains ± ±± ± ± parameters,weperformafittothespecificheatandsuscepti- their form; each Yb3+-Yb3+ bond has symmetry C (2mm) 2v bilitydataofRef.[33]andacutoftheINSdataaveragedover andeachsmallYb tetrahedronhasfulltetrahedralsymmetry T (4¯3m) [33, 49].4 Assuming an effective spin-1/2 doublet therange1.25Å−1 <|Q|<1.35Å−1at0.25K. Thisisaglobal d fit,minimizingsquareddifferencesbetweenexperimentaland [52], there are therefore four allowed anisotropic exchange theoreticalvaluesfromeachsetofexperimentaldatasimulta- interactions[15],takingtheform neously. Forthespecificheat,wefitonlythedatabelow5K 4 tominimizetheinfluenceofthesubtractionofthelatticecon- Heff ≡ JzzSizSzj−J± Si+S−j +Si−S+j + tribution,whilethesusceptibilitydataupto30Kisused. [53]. (cid:88)i=1 (cid:88)j<i (cid:104) (cid:16) (cid:17) Threeadditionalfittingparameterswereincluded;aconstant J γ S+S++h.c. + J ζ SzS++S+Sz +h.c. , (2) shiftofthesusceptibility,χ0,toaccountfortheVanVleckand ±± ij i j z± ij i j i j diamagneticcorecontributionsoftheYb3+ions,theintensity where(cid:16)thebonddepen(cid:17)dentph(cid:16)ases(cid:104)γ andζ are(cid:105)define(cid:17)d(cid:105)inthe scaleoftheINScutandtheoverallscaleoftheGaussianbroad- ij ij SupplementalMaterial[45]. ThespectrumofthisHamiltonian eningusedinthetheoreticalINSintensity[45]. Furtherdetails 4 ofthefittingmethodologyandcomparisonstoexperimental 0.10 C Model datacanbefoundintheSupplementalMaterial[45]. 3 χ Kimuraetal. Fromthisanalysiswefindauniquebestfitwhichprovides 0.08 excellentagreementwithalloftheknownexperimentaldata onBYZO. Thebestfitparametersare ]K 0.06 ]ol Jzz =−0.037meV, J± =+0.141meV, /mol 2 /mum J =+0.158meV, Jz =+0.298meV, [J 0.04 [e ±± ± C χ g =2.36, g =3.07. (3) z 1 ± 0.02 Comparisontothespecificheatandsusceptibilityisshownin Fig.3. Agreementwithbothisexcellent;smalldifferencescan beseeninthespecificheatathighertemperatures,likelydueto 0 0.00 0 2 4 6 8 10 12 14 someuncertaintyinthesubtractionofthelatticecontribution. Comparison to a cut of the INS data at 0.25 K is shown in T [K] Fig.2(a),alongwithanillustrationofthelevelstructureofthe singletetrahedronmodelwiththeparametersofEq.(3). The FIG.3. Comparisonofthe(magnetic)specificheat,C,andsuscep- tibility,χ,ofKimuraetal.[33]tothemodelofEq.(2)withfitted levelstructurematchesverywellwiththeenergiesofthepeaks parametersofEq.(3). Aconstantshiftχ wasincludedinthefitof intheINScutat0.25K. Explicitlyonehasthespectrum 0 thesusceptibilitytoaccountfortheVanVleckanddiamagneticcore contributionsoftheYb3+ions. E 0.000meV(E), E =0.754meV(E), 0 ≡ 3(cid:48) E =0.382meV(A ), E =1.802meV(T ), 1 2 4 2 E =0.530meV(T ), E =1.802meV(E), Discussion: The physics at very low temperatures, T 2 1 4(cid:48) E , shouldbeprimarilycontrolledbytheground E doubl(cid:28)et. E =0.806meV(T ), (4) 1 3 2 The states of this E doublet, , are rather exotic. As in |±(cid:105) theHeisenberglimit,theyarelargelynon-magnetic,carrying where the irreducible representation in T of each level is indicated. Wenotethatthe E and E levdelsareveryclose a uniform (scalar) spin-chirality κ S˜i (S˜j S˜k) 0.4 4 4(cid:48) on each triangle of the tetrahedron≡[3(cid:104)3].·How×ever,(cid:105)d∼ue to in energy, but not exactly equal. The model also accurately the large DM interaction, the states additionally acquire all- reproduces the wave vector and temperature dependence of in/all-out(AIAO)moments. Thisisgenericallyexpectedas the INS data as can be seen in Fig. 2(c),(d),(f). Additional theAIAOmomentsandtheuniformspin-chiralitytransform comparisonstomagnetizationandINSdatacanbefoundin identicallyunderthetetrahedralsymmetry[42,43]. Explicitly, theSupplementalMaterial[45]. Someofthefeaturesofthese energy levels can be better understood by adopting global theprojectionofapseudo-spinSi inthelocalbasisintothe quantizationaxesanddefiningglobalpseudo-spinoperatorsS˜i. E doublettakestheform(cid:104)±|Si|±(cid:105) = ±λzˆ withλ ∼ 0.13for UsingthenotationofRef.[54],themodelintheglobalbasisis the parameters of Eq. (3) and Si = 0. These AIAO (cid:104)±| |∓(cid:105) moments are octupolar in character, with the net magnetic parametrizedbyfouranisotropicexchangesJ ,J ,J andJ . 1 2 3 4 momentoneachtetrahedronvanishing. Duetothesmallness ThebestfitparametersofEq.(3)correspondtothevalues[45] oftheinter-tetrahedroninteractionswethusexpectBYZOto J =+0.587meV, J =+0.573meV, beanoctupolarparamagnetattemperaturesmuchsmallerthan 1 2 J = 0.011meV, J = 0.117meV. (5) E1. Directsignaturesofthisunusualparamagneticstatemay 3 − 4 − appearinmoreindirectmagneticprobes,suchasthenon-linear Since J J J and J 0toafairapproximation,these susceptibilities. 1 ∼ 2 ≡ 3 ∼ fittedparametersdescribeaHeisenbergantiferromagnetsup- Goingtoevenlowertemperaturesonecanpotentiallysee plementedwithlarge(indirect)DMinteractionD √2J indicationsofcollectivebehaviorofthesmalltetrahedra. De- ≡ 4 ∼ 0.28J [45, 55] and negligible symmetric anisotropies. We pendingonthestructureoftheinter-tetrahedroninteractions,a − canthusunderstandtheEdoubletgroundstateasanextension varietyofstatescouldbestabilized,suchasweakAIAOorder of the pair of S = 0 singlets that form the ground state in or non-magnetic valence bond solid phases [42, 43]. Tanta- theHeisenberglimit[33]. Similarly,theapproximatequintet lizinghintsoftheonsetofsuchcorrelationsmayalreadybe E E canbemappedtothehighenergy,five-folddegen- presentintheexperimentaldata. Wenotethatthe INSdata 4 ∼ 4(cid:48) erateS =2statesoftheantiferromagneticHeisenbergmodel. isslightlybroaderthancalculatedinstrumentalresolution(by Indeed,whenonlyHeisenbergandDMinteractionsarepresent 0.01 meV) which may be suggestive of weak dispersion, ∼ theseremainexacteigenstatesanddegenerate,leavingonlythe while the specific heat data of Kimura et al. [33] shows a smallsymmetricanisotropiestoprovideanysplitting. While slight upturn below 500 mK that is not explained by the ∼ thismappingisappealing,therearekeydifferences;forexam- single-tetrahedron model. We thus suspect that the current ple,thethreeS = 1tripletspresentintheHeisenbergmodel lowest temperatures explored in BYZO are at the threshold arestronglymixedbytheDMinteractions. ofobservingsuchinter-tetrahedroncorrelationsandpossibly 5 evenorderingofthese E doubletstates. Giventhecomplete Hillier,A.Amato,R.H.Colman, andA.S.Wills,Phys.Rev. characterizationoftheintra-tetrahedronphysicspresentedin Lett.109,037208(2012). this work, we feel the field is well poised to push the study [10] A.Bombardi,L.Paolasini,P.Carretta,J.Rodriguez-Carvajal, P.Millet, andR.Caciuffo,J.Mag.Mag.Mat.272-276,E659 ofBYZOtoevenlowertemperaturesandexploresuchinter- (2004). tetrahedraphysics. [11] A.La¨uchli,F.Mila, andK.Penc,Phys.Rev.Lett.97,229901 WethankJ.Y.Y.Linforthehelpwiththedatareduction. (2006). A.D.C., M.D.L.andL.S.W.thankA.Chernyshev, P.Maksi- [12] M.J.P.GingrasandP.A.McClarty,Rep.Prog.Phys.77,056501 mov,G.Ehlers,andI.Zaliznyakforusefuldiscussions. We (2014). thankK.KimuraandS.Nakatsujiforkindlyprovidingtheir [13] H.R.Molavian,M.J.P.Gingras, andB.Canals,Phys.Rev. datafromRef.[33]. TheresearchattheSpallationNeutron Lett.98,157204(2007). [14] S.OnodaandY.Tanaka,Phys.Rev.Lett.105,047201(2010). Source(ORNL)issupportedbytheScientificUserFacilities [15] K.A.Ross,L.Savary,B.D.Gaulin, andL.Balents,Phys.Rev. Division,OfficeofBasicEnergySciences,U.S.Departmentof X1,021002(2011). Energy(DOE).AFMwassupportedbytheU.S.Department [16] L.Savary,K.A.Ross,B.D.Gaulin,J.P.C.Ruff, andL.Balents, ofEnergy,OfficeofScience,BasicEnergySciences,Materials Phys.Rev.Lett.109,167201(2012). Sciences and Engineering Division. Research supported in [17] M.E.Zhitomirsky,M.V.Gvozdikova,P.C.W.Holdsworth, and partbytheLaboratoryDirectedResearchandDevelopment R.Moessner,Phys.Rev.Lett.109,077204(2012). ProgramofOakRidgeNationalLaboratory,managedbyUT- [18] A.W.C.Wong,Z.Hao, andM.J.P.Gingras,Phys.Rev.B88, 144402(2013). Battelle,LLC,fortheU.S.DepartmentofEnergy. Thework [19] J. G. Rau, S. Petit, and M. J. P. Gingras, (2015), atU.ofWaterloowassupportedbytheNSERCofCanada,the arXiv:1510.04292[cond-mat.str-el]. CanadaResearchChairprogram(M.J.P.G.,Tier1),theCana- [20] L.-J.Chang,S.Onoda,Y.Su,Y.-J.Kao,K.-D.Tsuei,Y.Yasui, dian Foundation for Advanced Research and the Perimeter K.Kakurai, andM.R.Lees,NatureCommunications3,992 Institute(PI)forTheoreticalPhysics. ResearchatPIissup- (2012). portedbytheGovernmentofCanadathroughIndustryCanada [21] J.R.Stewart,G.Ehlers,A.S.Wills,S.T.Bramwell, andJ.S. andbytheProvinceofOntariothroughtheMinistryofEco- Gardner,J.Phys.:Condens.Mat.16,L321(2004). [22] J.S.Gardner,S.R.Dunsiger,B.D.Gaulin,M.J.P.Gingras, nomicDevelopment&Innovation. J.E.Greedan,R.F.Kiefl,M.D.Lumsden,W.A.MacFarlane, J.G.R.andL.S.W.contributedequallytothiswork. N.P.Raju,J.E.Sonier,I.Swainson, andZ.Tun,Phys.Rev. Lett.82,1012(1999). [23] K.Kimura,S.Nakatsuji,J.-J.Wen,C.Broholm,M.B.Stone, E.Nishibori, andH.Sawa,NatureCommunications4(2013), 10.1038/ncomms2914. ∗ ThismanuscripthasbeenauthoredbyUT-Battelle,LLCunder [24] K.A.Ross,T.Proffen,H.A.Dabkowska,J.A.Quilliam,L.R. ContractNo.DE-AC05-00OR22725withtheU.S.Department Yaraskavitch,J.B.Kycia, andB.D.Gaulin,Phys.Rev.B86, ofEnergy.TheUnitedStatesGovernmentretainsandthepub- 174424(2012). lisher,byacceptingthearticleforpublication,acknowledges [25] T.Taniguchi,H.Kadowaki,H.Takatsu,B.Fåk,J.Ollivier,T.Ya- thattheUnitedStatesGovernmentretainsanon-exclusive,paid- mazaki,T.J.Sato,H.Yoshizawa,Y.Shimura,T.Sakakibara, up,irrevocable,world-widelicensetopublishorreproducethe T.Hong,K.Goto,L.R.Yaraskavitch, andJ.B.Kycia,Phys. publishedformofthismanuscript,orallowotherstodoso,for Rev.B87,060408(2013). UnitedStatesGovernmentpurposes.TheDepartmentofEnergy [26] H.Kadowaki,H.Takatsu,T.Taniguchi,B.Fåk, andJ.Ollivier, will provide public access to these results of federally spon- SPIN05,1540003(2015). soredresearchinaccordancewiththeDOEPublicAccessPlan [27] J. Robert, E. Lhotel, G. Remenyi, S. Sahling, I. Mirebeau, (http://energy.gov/downloads/doe-public-access-plan). C.Decorse,B.Canals, andS.Petit,Phys.Rev.B92,064425 † jeff[email protected] (2015). ‡ [email protected] [28] L.D.C.Jaubert,O.Benton,J.G.Rau,J.Oitmaa,R.R.P.Singh, [1] C.Lacroix,P.Mendels, andF.Mila,eds.,IntroductiontoFrus- N.Shannon, andM.J.P.Gingras,Phys.Rev.Lett.115,267208 tratedMagnetism(SpringerBerlinHeidelberg,2011). (2015). [2] G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. [29] N.R.Hayre,K.A.Ross,R.Applegate,T.Lin,R.R.P.Singh, Phys.:Condens.Mat.17,R1143(2005). B.D.Gaulin, andM.J.P.Gingras,Phys.Rev.B87,184423 [3] G.WatanabeandT.Maruyama,inNeutronStarCrust,editedby (2013). C.BertulaniandJ.Piekarewicz(NovaSciencePublishers,New [30] J.D.Thompson,P.A.McClarty,H.M.Rønnow,L.P.Regnault, York,2012)pp.23–44. A.Sorge, andM.J.P.Gingras,Phys.Rev.Lett.106,187202 [4] L.Balents,Nature464,199(2010). (2011). [5] H.T.Diep,FrustratedSpinSystems(WorldScientificPubCo [31] R.Applegate,N.R.Hayre,R.R.P.Singh,T.Lin,A.G.R.Day, PteLt,2013). andM.J.P.Gingras,Phys.Rev.Lett.109,097205(2012). [6] P.Santini,S.Carretta,G.Amoretti,R.Caciuffo,N.Magnani, [32] J.Oitmaa,R.R.P.Singh,B.Javanparast,A.G.R.Day,B.V. andG.H.Lander,Rev.Mod.Phys.81,807(2009). Bagheri, andM.J.P.Gingras,Phys.Rev.B88,220404(2013). [7] O.A.Starykh,Rep.Prog.Phys.78,052502(2015). [33] K. Kimura, S. Nakatsuji, and T. Kimura, Phys. Rev. B 90, [8] Y. Iqbal, H. O. Jeschke, J. Reuther, R. Valent´ı, I. I. Mazin, 060414(2014). M.Greiter, andR.Thomale,Phys.Rev.B92,220404(2015). [34] T.Haku,M.Soda,M.Sera,K.Kimura,S.Itoh,T.Yokoo, and [9] B.Fåk,E.Kermarrec,L.Messio,B.Bernu,C.Lhuillier,F.Bert, T.Masuda, (2015),arXiv:1510.03049[cond-mat.mtrl-sci]. P. Mendels, B. Koteswararao, F. Bouquet, J. Ollivier, A. D. [35] Y.Okamoto,G.J.Nilsen,J.P.Attfield, andZ.Hiroi,Phys.Rev. 6 Lett.110,097203(2013). [36] Y.Tanaka,M.Yoshida,M.Takigawa,Y.Okamoto, andZ.Hiroi, Phys.Rev.Lett.113,227204(2014). [37] Y.Okamoto,G.J.Nilsen,T.Nakazono, andZ.Hiroi,J.Phys. Soc.Jpn.84,043707(2015). [38] L. Savary, H.-Y. Kee, Y. B. Kim, and G. Chen, (2015), arXiv:1511.06972[cond-mat.str-el]. [39] O.BentonandN.Shannon,J.Phys.Soc.Jpn.84,104710(2015). [40] H.Tsunetsugu,J.Phys.Soc.Jpn.70,640(2001). [41] H.Tsunetsugu,Phys.Rev.B65,024415(2001). [42] V.N.Kotov,M.E.Zhitomirsky,M.Elhajal, andF.Mila,Phys. Rev.B70,214401(2004). [43] V. N. Kotov, M. E. Zhitomirsky, M. Elhajal, and F. Mila, J. Phys.:Condens.Mat.16,S905(2004). [44] V.N.Kotov,M.Elhajal,M.E.Zhitomirsky, andF.Mila,Phys. Rev.B72,014421(2005). [45] See Supplemental Material at [URL will be inserted by pub- lisher]wherewediscussadditionaldetailsregardingthesample preparationandcharacterization,theinelasticneutronscatter- ingmeasurementsandthefittingprocedureandalsoincludes additionalRefs.[S3]and[S6]. [46] A.J.C.Wilson,InternationalTablesforCrystallography:Math- ematical,physical,andchemicaltables,Vol.3(International UnionofCrystallography,1992). [47] A.Huq,J.P.Hodges,L.Heroux, andO.Gourdon,Zeitschrift furKristallographieProceedings1,127(2011). [48] M.ScheikowskiandH.Mu¨ller-Buschbaum,Zeitschriftfranor- ganischeundallgemeineChemie619,559(1993). [49] C.RabbowandH.Mu¨ller-Buschbaum,Zeitschriftfranorganis- cheundallgemeineChemie622,100(1996). [50] B.Winn,U.Filges,V.O.Garlea,M.Graves-Brook,M.Hagen, C.Jiang,M.Kenzelmann,L.Passell,S.M.Shapiro,X.Tong, and I. Zaliznyak, in EPJ Web of Conferences, Vol. 83 (EDP Sciences,2015)p.03017. [51] J.G.RauandM.J.P.Gingras,Phys.Rev.B92,144417(2015). [52] Thecaseofadipolar-octupolardoublet(Γ Γ )isinprinciple 5⊕ 6 possibleaswell,withadifferentanisotropicexchangemodel [56].Wefindsuchamodeldoesnotprovideagooddescription of the specific heat or magnetic susceptibility of BYZO and thus consider only an effective spin-1/2 (Γ ) doublet. This is 4 consistent with the Γ ground doublet found in Ref. [34] by 4 fittingtheobservedcrystalfieldexcitations. [53] FittingonlythespecificheatandsusceptibilityfromRef.[33] doesnotproduceauniquefit,butmanyequallygoodfits.How- ever,thesediffersignificantlywhenincludingconstraintsthat arisefromfittingtheINSdata. [54] H.Yan,O.Benton,L.D.C.Jaubert, andN.Shannon, (2013), arXiv:1311.3501[cond-mat.str-el]. [55] B.Canals,M.Elhajal, andC.Lacroix,Phys.Rev.B78,214431 (2008). [56] Y.-P.Huang,G.Chen, andM.Hermele,Phys.Rev.Lett.112, 167203(2014). 7 SupplementalMaterialfor“Anisotropicexchangewithindecoupledtetrahedrainthequantum breathingpyrochloreBa Yb Zn O ” 3 2 5 11 ∗ J. G. Rau,1, L. S. Wu,2, A. F. May,3 L. Poudel,2,4 B. Winn,2 V. O. Garlea,2 A. Huq,5 P. † ‡ Whitfield,5 A. E. Taylor,2 M. D. Lumsden,2 M. J. P. Gingras,1,6,7 and A. D. Christianson2,4 1DepartmentofPhysicsandAstronomy, UniversityofWaterloo, Ontario, N2L3G1, Canada 2QuantumCondensedMatterDivision, OakRidgeNationalLaboratory, OakRidge, TN-37831, USA 3MaterialsScience&TechnologyDivision,OakRidgeNationalLaboratory,OakRidge,TN-37831,USA 4Department of Physics & Astronomy, University of Tennessee, Knoxville, TN-37966, USA 5Chemical&EngineeringMaterialsDivision,OakRidgeNationalLaboratory,OakRidge,TN37831,USA 6Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada 7CanadianInstituteforAdvancedResearch,180DundasStreetWest,Suite1400,Toronto,ON,M5G1Z8,Canada (Dated:January16,2016) I. SAMPLESYNTHESIS 4 Polycrystalline samples of Ba Yb Zn O were synthe- 3 2 5 11 Present study sized by solid-state reaction in Al O crucibles. The high- 2 3 Kimura et al. purityreactants(driedYb O ,BaCO ,ZnO)weregroundto- 2 3 3 getherfor5-10minutesusinganagatemillingsetinaSPEX K] SamplePrep Mixer/Mill. The mixture was pressed into pel- Yb Cp lets, whichwereinitiallyfiredat1150◦Cfor25-50h(inair). ol m 2 Subsequentmilling,pelletpressing,andannealingattemper- J/ atures up to 1170◦C were utilized to promote homogeneity C [ andphasepurityinthefinalproduct. Aslightexcess(upto4 at.%)ofBaandZn-containingreactantswasutilizedtomini- Cm=Cp-Cl mizethechanceofformingYb-containingimpurities. 0 0 5 10 15 T [K] II. SPECIFICHEATANDMAGNETICSUSCEPTIBILITY FIG.S1.ThetemperaturedependentspecificheatofBa Yb Zn O . Magnetization measurements were performed upon cool- 3 2 5 11 Filled circles are from measurements of a piece taken from the ing in an applied field of 0.1 T, and isothermal magnetiza- samebatchasusedfortheinelasticneutronscatteringmeasurements. tion measurements were performed at 1.9 K; Quantum De- Opencirclesarethemagneticcontributiontothespecificheat(C ) m sign’s Magnetic Property Measurement System was utilized taken from Kimura et al. [S1], determined C by subtracting the m formagneticmeasurements.Specificheatmeasurementswere latticecontribution(C)estimatedfromBa Lu Zn O fromthespe- l 3 2 5 11 performedinaQuantumDesignPhysicalPropertyMeasure- cificheatofBa3Yb2Zn5O11(Cp). mentSystem. The specific heat of Ba Yb Zn O is shown in Fig. S1. 3 2 5 11 Thespecificheatofasamplefromthesamebatchusedforthe The magnetic susceptibility and inverse susceptibility of a inelastic neutron scattering measurements is compared with sampletakenfromthesamebatchasthesampleusedforthe thatfrom Kimuraetal.[S1]. Bothmeasurementsareconsis- inelastic neutron scattering data are shown in Fig. S2 for an tentwithamaximumat 2.4K. appliedfieldof0.1T.Amaximuminthesusceptibilityoccurs ∼ at 4K. ∼ ∗This manuscript has been authored by UT-Battelle, LLC under Con- III. NEUTRONDIFFRACTION tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting thearticleforpublication, acknowledgesthattheUnitedStatesGovern- Neutron powder diffraction measurements of ment retains a non-exclusive, paid-up, irrevocable, world-wide license Ba Yb Zn O were performed with the time-of-flight 3 2 5 11 to publish or reproduce the published form of this manuscript, or al- powder diffractometer POWGEN, at the Spallation Neutron low others to do so, for United States Government purposes. The De- Source (SNS) at Oak Ridge National Laboratory [S2]. Data partment of Energy will provide public access to these results of feder- werecollectedonapowderBa Yb Zn O samplewithmass allysponsoredresearchinaccordancewiththeDOEPublicAccessPlan 3 2 5 11 (http://energy.gov/downloads/doe-public-access-plan). 6.32 g. The data were collected for 2 hours at temperatures †jeff[email protected] 10 K and 300 K, respectively. Structural refinement was ‡[email protected] carriedoutusingthesoftwarepackageFULLPROF[S3] 8 2 0.08 200 0.07 Yb] B = 0.1 T mol 0.06 Yb] 0.06 [emu/0.05 150 -1 Yb] mol 0.040 5 10 15 mol mu/ 0.04 T (K) 100 mu/ [e [e 1/ 0.02 50 0.00 0 0 100 200 300 T [K] FIG.S2. Leftaxis: Thetemperaturedependentstaticmagneticsus- ceptibility(χ= M/B)forBa Yb Zn O (bluecircles),measuredin 3 2 5 11 fieldB = 0.1Tfromtemperature1.9to320K. Rightaxis: Thein- versemagneticsusceptibility(1/χ)asafunctionoftemperature.The insetshowsanexpandedviewofthelowtemperatureregion,where amaximuminthesusceptibilityoccursaround4K. Atom Wyckoff x y z Biso Occ. FIG.S3. NeutronpowderdiffractiondatacollectedwithPOWGEN Ba 24f 0.7055(3) 0.00000 0.00000 0.1313(0) 0.25000 at10K(a)and300K(b)forBa3Yb2Zn5O11. Rietveldrefinement Yb 16e 0.8365(5) 0.8365(5) 0.8365(5) 0.1187(9) 0.16670 (redline),differencepattern(blueline)andcalculatedreflectionpo- Zn(1) 16e 0.0832(5) 0.0832(5) 0.0832(5) 0.1155(4) 0.16670 sitions(greenticks)aresuperimposedonthedatapoints(blackcir- Zn(2) 24g 0.25000 0.25000 0.0828(1) 0.1729(2) 0.25000 cles).Theinsetsshowanexpandedviewofthehigh Q regionofthe O(1) 4b 0.50000 0.50000 0.50000 0.4219(9) 0.04167 data. | | O(2) 4a 0.00000 0.00000 0.00000 0.2334(2) 0.04167 O(3) 16e 0.3419(3) 0.3419(3) 0.3419(3) 0.3313(9) 0.16670 T (K) a(Å) R R R χ2 O(4) 16e 0.6679(6) 0.6679(6) 0.6679(6) 0.3777(2) 0.16670 p wp exp O(5) 48h 0.1660(2) 0.1660(2) 1.0000(4) 0.30015(0) 0.50000 10 13.47117(3) 9.07 8.63 1.53 31.8 300 13.48997(3) 10.7 9.23 1.99 21.5 Atom Wyckoff x y z Biso Occ. TABLES2.Comparisonoftherefinementparametersat10and300 K. Ba 24f 0.7055(6) 0.00000 0.00000 0.7268(4) 0.25000 Yb 16e 0.8365(5) 0.8365(5) 0.8365(5) 0.4480(3) 0.16670 Zn(1) 16e 0.0832(9) 0.0832(9) 0.0832(9) 0.4184(2) 0.16670 Zn(2) 24g 0.25000 0.25000 0.0824(7) 0.5697(8) 0.25000 experimental resolution. The refined atomic parameters of O(1) 4b 0.50000 0.50000 0.50000 0.8089(3) 0.04167 Ba Yb Zn O at10Kand300KareshowninTableS1.The 3 2 5 11 O(2) 4a 0.00000 0.00000 0.00000 0.4878(2) 0.04167 latticeconstantsandgoodnessoffitparametersaredisplayed O(3) 16e 0.3421(4) 0.3421(4) 0.3421(4) 0.6450(5) 0.16670 inTableS2. O(4) 16e 0.6683(0) 0.6683(0) 0.6683(0) 0.7374(4) 0.16670 O(5) 48h 0.1659(4) 0.1659(4) 1.0001(6) 0.6505(3) 0.50000 TABLE S1. Atomic parameters for Ba Yb Zn O at 10 K (top IV. INELASTICNEUTRONSCATTERING 3 2 5 11 panel)and300K(bottompanel). Inelastic neutron scattering (INS) experiments were per- formed on the hybrid spectrometer (HYSPEC) at the Spalla- The neutron diffraction data at 10 and 300 K along with tionNeutronSourceatOakRidgeNationalLaboratory[S5]. the Rietveld refinement of the structural model is shown in Thedatawerecollectedat0.25K,10K,and20Kutilizinga Fig.S3(a)and(b)respectively. Thefittedmodeldescribesthe 3Herefrigerator,withincidentenergies E =3.8,7.5,and15 i datawelloverawidewavevectorrange(1.3< Q <21Å−1). meVandFermichopperfrequenciesof180,300,and300Hz | | Afewunindexedimpuritypeakswithintensitieslessthan1% respectively. To cover a large region of reciprocal space the ofthemaindiffractionpeaksofBa Yb Zn O areobserved. center of the detector vessel, which covers 60 of scattering 3 2 5 11 ◦ Thesmallfractionofimpuritiesappearstobeconsistentwith angle,wasplacedatscatteringanglesrangingfrom33-101 . ◦ that found by Kimura et al. [S1] and indicates that the sam- ShowninFig.S4(a),andFig.S4(b)aretheintensitymaps pleconsistsprimarilyofthecubicBa Yb Zn O phase. No oftheinelasticneutronscatteringdataofBa Yb Zn O with 3 2 5 11 3 2 5 11 site vacancies or disorder between sites was detected within E = 15 meV measured at temperatures 0.25 K and 10 K. i 9 3 FIG.S4.IntensitymapoftheinelasticneutronscatteringfromBa Yb Zn O withE =15meVat0.25K(a)and10K(b). 3 2 5 11 i asmallpeakaround Q =0.7Å−1. | | As a supplement to the data collected at 0.25 K and 20 K 12 withE =3.8meVdescribedandshowninthemaintext,data T = 0.25 K = [1, 1.25] meV i collectedwith E =3.8meVat10KisshowninFig.S6be- Ei = 3.8 meV = [0.65, 0.9] meV i low. TheHYSPECinstrumentalenergyresolutionwith E = i b.] 3.8meVandthe180Hzchoppersettingusedexperimentally y [ar 8 is shown in Fig. S7 as a function of energy transfer. The |Q| sit dependence of the inelastic spectrum is shown through a se- en riesofcutswithanenergyrangeof[0.65,0.9]meVattemper- Int aturesof0.25,10,and20KinFig.S8. 4 10 V. CRYSTALFIELDEXCITATIONS 0 0.0 0.5 1.0 1.5 2.0 2.5 -1 Inelastic neutron scattering data was collected with the |Q| [A ] ARCS[S6]time-of-flightspectrometertoprobetheexcitation spectrumathigherenergies. Thisdatawascollectedat10K FIG. S5. Wave vector Q dependent neutron scattering intensity measured at 0.25 K with| in|cident energy Ei = 3.8 meV, averaged with Ei = 100 meV and shows three crystal field excitations overtheexcitationenergywindowω=[0.65,0.9]meV(redpoints) at 38,54,and67meV.Thedatapresentedhereareconsis- ∼ andω=[1,1.25]meV(blackpoints). tentwiththeresultsofRef.[S7]whereamoredetailedanal- ysis of the crystal field excitation spectrum and Hamiltonian can be found. We note that for a Kramers ion such as Yb3+ Althoughthelowenergyexcitationsarenotwellresolvedwith (J = 7/2), in the absence of broken time reversal symmetry, E =15meV,thedatashowninFig.S4confirmthatthereis theminimumdegeneracyistwosothat(2J+1)/2doubletsare i noadditionalexcitationsupto13.75meV,whichisconsistent expectedincludingthegroundstate. Thustheobservationof withthemodeldescribedinthemaintext. threecrystalfieldexcitationsisstrongevidencethatthemodes As mentioned in the main text, we noticed that there is a observedatenergieslessthan 2meVdiscussedinthemain weakbroadfeatureintheINSspectrumnearanenergytrans- paper are due to interactions ∼between the Yb3+ within each fer of 1 meV (main text Fig. 2(a)). However, this feature tetrahedron. has a significantly different dependence on wave vector Q | | from that of the other observed modes. Fig. S5 shows the wave vector Q dependent neutron scattering intensity mea- | | VI. THEORETICALDETAILS sured at 0.25 K with incident energy E = 3.8 meV, aver- i agedovertheexcitationenergywindowω = [0.65,0.9]meV andω = [1,1.25]meV.Incontrasttothewelldefinedinelas- A. Model ticmodecontainedintheenergyrangeω = [0.65,0.9]meV, whichpeaksnear Q =1.3Å−1,thebroadfeaturecapturedby For completeness, we state our model and conventions in | | theintegrationrange,ω=[1,1.25]meVismuchweakerwith more detail. We consider the effective anistoropic exchange 10 4 2.0 10 Model 10K 10K Data 10K Model 9 Data 4 8 1.5 b.) 7 Intensity(ar2 [meV]ω1.0 3456 0.5 2 1 (a) (b) (c) 0 0.0 0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 ω[meV] |Q|[A˚−1] |Q|[A˚−1] FIG.S6. Inelasticneutronscatteringdata(E=3.8meV)andcomparisontotheoreticalmodelat(a-c)10K. Theoveralltheoreticalintensity i scalewasfitusingtheINScutat0.25K.AGaussianbroadeningwithenergydependencefollowingtheexperimentalenergyresolutionfunction (showninFig.S7)wasincludedinthetheoreticalcalculation.(a)CutofINSdataaveragedoverthewindow1.25Å−1< Q <1.35Å−1.Results | | forthebestfitsingletetrahedronmodelofthemaintextareshown.(b)IntensitymapofpowderaveragedINSdata.Theexcitationsarenearly dispersionfreeoverthefull Q range.(c)Modelcalculationsforthebestfitsingletetrahedronmodel.TheYb3+formfactorwasevaluatedin | | thedipoleapproximation,asgiveninRef.[S4]. 8 0.25K Model 0.15 10K Data Ei = 3.8 meV 20K 6 Fermi Chopper Frequency 180 Hz ] ) V b. e r m0.10 (a ution [ ensity 4 ol nt s I e R0.05 2 0 0.00 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 [meV] Q [A˚−1] | | FIG. S8. The Q dependence of the inelastic neutron scattering | | FIG. S7. HYSPEC resolution as a function of the energy trans- dataforBa Yb Zn O , averagedovertheexcitationintheenergy 3 2 5 11 fer ∆ω, with incident energy Ei = 3.8 meV and Fermi chop- window0.65meV<ω<0.9meV. per frequency of 180 Hz. The red line is the fit to the empiri- cal equation y = Ae−∆ω/Γ with A = 0.12398 0.0004 meV, and ± Γ=2.95111 0.02144meV. ± connectandthuscanbeexpressedasamatrix modelinthelocalbasisdefinedas 0 +1 ω ω2 +1 0 ω2 ω γ= ω ω2 0 +1, (S2) Heff ≡Xi=41 Xj<i hJzzSizSzj−J±(cid:16)Si+S−j +Si−S+j(cid:17)+ ω2 ω +1 0  J±± γijSi+S+j +h.c + Jz± ζij SizS+j +Si+Szj +h.c whereω=e2πi/3.Themagneticfieldiscoupleddirectlytothe (cid:16) 4 (cid:17) (cid:16) h i (cid:17)i effectivemomentoneachYb3+site,definedas −µBB· g± xˆiSix+yˆiSiy +gzzˆiSiz , (S1) Xi=1 h (cid:16) (cid:17) i µi ≡µB g± xˆiSix+yˆiSiy +gzzˆiSiz , (S3) h (cid:16) (cid:17) i with four symmetry allowed exchanges J , J , J and J zz z ± ±± ± andexternalmagneticfieldB. Thecomplexbondphasefac- whereg andg aretheg-factorsinthelocal[111]direction z tors γij and ζij = −γi∗j depend only on the basis sites they andintheplane±perpendiculartoit. Theselocalaxesarede-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.