Andreas Stegmeir GRILLIX: A 3 D turbulence code for magnetic fusion devices based on a field line map IPP 5/135 Januar, 2015 GRILLIX: A 3D turbulence code for magnetic fusion devices based on a field line map Andreas Korbinian Stegmeir ¨ ¨ TECHNISCHE UNIVERSITAT MUNCHEN Max-Planck-Institut fu¨r Plasmaphysik GRILLIX: A 3D turbulence code for magnetic fusion devices based on a field line map Andreas Korbinian Stegmeir Vollst¨andiger Abdruck der von der Fakult¨at fu¨r Physik der Technischen Universit¨at Mu¨nchen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Stephan Paul Pru¨fer der Dissertation: 1. Hon.-Prof. Dr. Sibylle Gu¨nter 2. Univ.-Prof. Dr. Katharina Krischer 3. Univ.-Prof. Dr. Karl-Heinz Spatschek (i.R.) Heinrich-Heine-Universit¨at Du¨sseldorf Die Dissertation wurde am 13.10.2014 bei der Technischen Universit¨at Mu¨nchen eingereicht und durch die Fakult¨at fu¨r Physik am 13.01.2015 angenommen. Abstract The main contribution to the (anomalous) cross field transport in tokamaks is known to be due to turbulence and numerical codes are essential tools in order to predict transport levels and understand physical mechanisms. Whereas for the interior closed field line region sophisticated turbulence codes are already quite advanced, the outer region of a tokamak, i.e. the edge and scrape-off layer (SOL), still lacks such tools to a large extent. The presence of many spatio- temporal scales and the complex geometry in diverted machines pose a huge challenge for the modelling of the edge/SOL. In this work the newly developed code GRILLIX is presented, which is aimed to set a first milestoneinthedevelopmentofa3Dturbulencecodefortheedge/SOL.GRILLIXusesasimpli- fied physical model (Hasegawa-Wakatani), but is capable to treat the complex geometry across the separatrix. The usually employed field aligned coordinate systems are avoided by using a cylindrical grid (R,Z,ϕ) which is Cartesian within poloidal planes. The discretisation of per- pendicular (w.r.t. the magnetic field) operators is straight forward and parallel operators are discretised with a field line map procedure, i.e. field line tracing from plane to plane and in- terpolation. Via a grid-sparsification in the toroidal direction the flute mode character of the solutions can be exploited computationally. Ultimately, tokamak geometries with an arbitrary poloidal cross section, including a separatrix, can be treated with GRILLIX. Innon-field-alignedgridsnumericaldiffusion,i.e. aspuriousperpendicularcouplingdepending on parallel dynamics, arises unavoidably. This numerical diffusion can be fatal for codes, since the parallel dynamics is usually orders of magnitude faster than perpendicular dynamics in tokamaks. A new numerical scheme is developed and applied in GRILLIX which maintains the self-adjointness property of the parallel diffusion operator on the discrete level and reduces numericaldiffusiondrastically. Manybenchmarksinseveralgeometriesarepresentedtovalidate the field line map approach in general and GRILLIX in special. First effects of the geometry in diverted machines on drift wave turbulence were studied with GRILLIX.FieldalignedstructuresgetstronglydistortedastheyentertheX-pointregion. Their perpendicular spatial extent decreases thereby drastically towards the X-point and are thus subject to enhanced dissipation. Since ultimately close to the X-point fluctuations die out, the X-pointconstitutesakindofbarrierforfluctuations. Thismechanismissimilartothepreviously found resistive X-point mode. i Zusammenfassung Radialer(anormaler)TransportinTokamakswirdhaupts¨achlichdurchturbulenteProzessegetra- gen und numerische Simulationsprogramme sind heutzutage ein unverzichtbares Werkzeug, um Vorhersagenu¨berdasTransportlevelzutreffenundumphysikalischeMechanismenzuverstehen. W¨ahrend fu¨r den inneren Bereich geschlossener Feldlinien, hochentwickelte Programme bereits zurVerfu¨gungstehen,gibtesfu¨rden¨außerenBereich(RandundAbsch¨alschicht)vonTokamaks kaum Ans¨atze. Das Vorhandensein vieler raumzeitlicher Skalen und eine komplexe Geometrie in DivertormaschinenstelleneinegrosseHerausforderungbeimModellierendesRandbereichesdar. In dieser Arbeit wurde das Simulationsprogramm GRILLIX entwickelt, welches einen er- sten Meilenstein bei der Entwicklung eines 3D Turbulenzprogrammes fu¨r den Rand und die Absch¨alschicht setzt. GRILLIX basiert noch auf einem vereinfachten physikalischen Model (Hasegawa-Wakatani), aber kann dafu¨r auf die komplexe Geometrie angewandt werden, z.B. sindSimulationenu¨berdieSeparatrixhinwegm¨oglich. DurchdasVerwendeneineszylindrischen numerischen Gitters (R,Z,ϕ), welches kartesisch innerhalb poloidaler Ebenen ist, werden die u¨blicherweise verwendeten Feldlinien-angepassten Koordinaten umgangen. Zur Diskretisierung senkrechter (im Bezug auf die Magnetfeldlinien) Operatoren k¨onnen damit Standardmethoden herangezogen werden. Die Diskretisierung paralleler Operatoren erfolgt mittels Feldlinienabbil- dung, d.h. Feldlinien werden von Ebene zu Ebene verfolgt und Werte an den entsprechenden Stellen interpoliert. Strukturen sind u¨blicherweise stark elongiert entlang Magnetfeldlinien und diese Eigenschaft wird ausgenutzt durch eine Ausdu¨nnung des Rechengitters in toroidaler Rich- tung. Tokamak Geometrien mit beliebigem poloidalen Querschnitt, einschließlich einer Separa- trix, k¨onnen mit GRILLIX behandelt werden. In Rechengittern, die nicht Feldlinien angepasst sind, tritt numerische Diffusion auf, d.h. eine f¨alschliche numerische senkrechte Kopplung, die von der parallelen Dynamik abh¨angt. Diese nu- merischeDiffusionkannfatalseinfu¨rSimulationsprogramme,dadieparalleleDynamiku¨blicher- weise Gr¨oßenordnungen schneller ist als die senkrechte. Ein neues numerisches Schema wurde daher entwickelt und in GRILLIX angewendet, welches die Selbstadjungiertheit das paralle- len Diffusionsoperators auf der diskreten Ebene erh¨alt und die numerische Diffusion drastisch reduziert. Viele Tests in verschiedenen Geometrien werden pr¨asentiert, um das Konzept der Feldlinienabbildung im Allgemeinen und GRILLIX im Speziellen zu verifizieren. Erste Geometrieeffekte in Maschinen mit Divertor auf Drift-Wellen Turbulenz wurden mit GRILLIX untersucht. Feldlininen ausgerichtete Strukturen werden stark deformiert in der N¨ahe desX-Punktes. DerensenkrechteAusdehnungnimmtzumX-PunkthinstarkabundDissipation wird dominant. Der X-Punkt stellt letztlich eine Art Barriere fu¨r Fluktuation dar, da diese in der N¨ahe des X-Punktes praktisch verenden. Der Mechanismus ¨ahnelt damit der bereits zuvor gefundenen resistiven X-Punkt Mode. iii Acknowledgments Many ideas and most strategic decisions for this work were performed in meetings among David Coster, Karl Lackner, Klaus Hallatschek and me. Hence, I want to cordially thank all three of them equally for supervising me. Karl Lackner motivated not only this work but also myself during some difficult phases. With his overview and belief in the whole project we were always able to make the right strategic decisions. I want to thank David Coster for always having an open door for me and keeping me motivated at any time with many good words (and cookies on Friday). Atmanyproblemshecouldhelpwithhisoftenpragmaticviewonthingsfromdistance. As well, I was also always able to discuss the smallest details with him. I want to thank Klaus Hallatschek for his brilliant ideas contributing to this work. His detailed and critical view on results was often very helpful for the next steps and I enjoyed working with him very much. Furthermore, Omar Maj helped me a lot at the development of the numerical scheme and his door was still open on many Fridays late. I also want to thank Matthias H¨olzl for some help withthenumericalschemeandhisadvicewiththesolver,Hans-JoachimKlingshirn,whohelped me several times with computational issues, Michele Martone for his advice with the LIBRSB library, Andreas Kammel for exchanging his experience about the Hasegawa-Wakatani model with me and Emanuele Poli for his advice during the final stage of this work. AveryspecialthanksgoestomyofficemateandgoodfriendJohannesGrießhammer. Notonly hehelpedmeseveraltimeswithfrustratingbugsinthecodeandothercomputationalissues,but alsowewereabletoanswermostquestionsandsolvemostproblemsinourdiscussions. Working with him was a perfect symbiosis (Maybe, I was even slightly parasitic). Finally, I thank my significant other Daniela Gl¨aser for supporting me in every aspect. Not only once, she encouraged me during difficult phases. I want to thank my family for supporting and ultimately making all this possible for me. v
Description: