ebook img

Andersson et al., 2011 PDF

21 Pages·2017·3.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Andersson et al., 2011

©2017.PublishedbyTheCompanyofBiologistsLtd|Development(2017)144,1743-1763doi:10.1242/dev.148007 REVIEW The developmental biology of genetic Notch disorders JanMašekandEmmaR.Andersson* ABSTRACT ADAMsecretaseandtheγ-secretasecomplex,resultinginreleaseof the Notch intracellular domain (NICD), which translocates to the Notch signaling regulates a vast array of crucial developmental nucleuswhereitactstogetherwithRBPJκandMAMLtoactivate processes. It is therefore not surprising that mutations in genes transcription. The process is further fine-tuned by numerous post- encodingNotchreceptorsorligandsleadtoavarietyofcongenital translationalmodificationsofbothreceptorsandligands,andviaco- disordersinhumans.Forexample,lossoffunctionofNotchresultsin activatorsorinhibitorsthatfunctionateverylevelofthe,deceptively Adams-Oliver syndrome, Alagille syndrome, spondylocostal simple,signalingpathway(Anderssonetal.,2011;Bray,2016). dysostosis and congenital heart disorders, while Notch gain of Mutations in components of the Notch family are generally function results in Hajdu-Cheney syndrome, serpentine fibula constrained by the pathway’s essential developmental functions, polycystic kidney syndrome, infantile myofibromatosis and lateral although mutations that confer grave congenital disorders and meningocelesyndrome.Furthermore,structure-abrogatingmutations fitness costs have been identified (Table 1). The discovery of in NOTCH3 result in CADASIL. Here, we discuss these human congenital diseases related to defective Notch signaling began in congenitaldisordersinthecontextofknownrolesforNotchsignaling 1996, with the linkage analysis-based discovery of mutations on during development. Drawing on recent analyses by the exome chromosome 19, more specifically NOTCH3 mutations, in aggregation consortium (EXAC) and on recent studies of Notch individuals diagnosed with CADASIL (cerebral autosomal signalingin modelorganisms,wefurther highlight additionalNotch dominant arteriopathy with subcortical infarcts and receptorsorligandsthatarelikelytobeinvolvedinhumangenetic leukoencephalopathy)(Jouteletal.,1996).Soonafter,twogroups diseases. showedthatJAG1wasthegenewithinchromosome20p12thatwas KEYWORDS:Adams-Oliversyndrome,Alagille,CADASIL,Notch, responsibleforAlagillesyndrome(Lietal.,1997;Odaetal.,1997). Development,Genetics Sincethen,severalinheriteddisorderscausedbymutationsinNotch genes have been identified (Table 1). Prior to these discoveries, Introduction chromosomal rearrangement of human NOTCH1 and viral Notchsignalingaroseinmetazoans(Gazaveetal.,2009;Richards integration into murine Notch4 had been shown to induce T-ALL and Degnan, 2009) and is considered one of the core signaling and mammary tumors, respectively (Ellisen et al., 1991; pathways that controls embryonic development. Indeed, from Uyttendaele et al., 1996), highlighting a key role for Notch in sponges and roundworms to mice, Notch signaling controls cancer(reviewedbyNowellandRadtke,2017). multiple crucial processes during development (Andersson et al., ManyofthecongenitaldiseaseslinkedtotheNotchpathwayare 2011).Importantly,sincethediscoveryofamutantflywithnotched rare, with prevalences of just afew per 100,000, emphasizing just wings, earning the gene the name Notch (N), over 100 years ago howcrucialNotchsignalingcomponentsaretohumansurvival,but (Dexter, 1914), and the subsequent identification of the genomic alsopresentingserioushurdlestostudyingtheimpactofthesegenes region responsible (Morgan, 1917), a wealth of studies – ranging in humans. Fortunately, the generation of knockout mice and the fromtheelucidationoftheNotchpathway(reviewedbyBray,2016; studyofotheranimalmodelshaveprovidedresearcherswithample KopanandIlagan,2009),tothegenerationofknockoutsinmodel information regarding Notch gene function, allowing the role of organisms and the discovery of Notch genes mutated in humans specificNotchcomponentsinhumandevelopmentanddiseasetobe (Gridley, 2003) – has confirmed an essential role for Notch teased apart. In this Review, we describe Notch-driven human signalinginhumandevelopment. congenital diseases in light of our current knowledge regarding DifferentspecieshavedistinctrepertoiresofNotchreceptorsand Notchgenefunctioninanimalmodels.TheNotchpathwayhasbeen ligands (Fig. 1 and Gazave et al., 2009). Humans, for example, implicatedinthedevelopmentofmostorgans,andacomprehensive express four Notch receptors (NOTCH1-NOTCH4) and five review of Notch control of embryonic development is not in the different Notch ligands (JAG1 and JAG2, and DLL1, DLL3 and scope of this Review. Rather, we focus on the developmental DLL4)(Fig.2),whereasfruitflieshaveonereceptor(Notch)andtwo processes underlying the pathologies manifested in Notch-related ligands (Delta and Serrate). Pathway activation typically occurs congenital disorders, and discuss future routes of research to whenamembrane-boundheterodimericsingle-passNotchreceptor discoverwhichunknownpathologiesmaybeNotchrelated.Wealso interacts with a Notch ligand on a contacting cell (Fig. 3). This discuss recent ‘big data’ analyses of whole-exome and whole- interaction leads to a series of proteolytic cleavages, mediated by genome sequencing that have revealed the presence or absence of T N mutations in Notch components in the human population, E confirmingthatspecificNotchcomponentsareessentialtospecies M KarolinskaInstitutet,Huddinge14183,Sweden. fitness(Table2)andpresentingexcitingfutureavenuesofresearch. P *Authorforcorrespondence([email protected]) O Adams-Oliversyndrome:rolesforNOTCH1,DLL4andRBPJk L J.M.,0000-0003-2904-3808;E.R.A.,0000-0002-8608-625X E inhumandevelopment V ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribution Prior to the 1940s, children born with underdeveloped upper or E License(http://creativecommons.org/licenses/by/3.0),whichpermitsunrestricteduse, D distributionandreproductioninanymediumprovidedthattheoriginalworkisproperlyattributed. lowerextremitiesweredefinedashavingcongenitalamputations,a 1743 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 A B 70 H.sapiens/DLL1 100 H. sapiens/NOTCH2 90 M. musculus/Dll1 47 M. musculus/Notch2 99 G. gallus/Dll1 100 X. tropicalis/Notch2 95 D. rerio/Dla G. gallus/Notch2 51 97 D. rerio/Dld 53 D. rerio/Notch2 D. rerio/Dll4 D. rerio/Notch3 X. tropicalis/Dll4 X. tropicalis/Notch3 96 99 27 G. gallus/Dll4 76 89 H. sapiens/NOTCH3 70 H. sapiens/DLL4 100 M. musculus/Notch3 93 100 M. musculus/Dll4 80 D. rerio/Notch1b 81 X. tropicalis/Dlc D. rerio/Notch1a D. rerio/Dlb 70 100 X. tropicalis/Notch1 7647 D. rerio/Dlc G. gallus/Notch1 94 H. sapiens/DLL3 64 H. sapiens/NOTCH1 90 100 M. musculus/Dll3 100 M. musculus/Notch1 D. melanogaster/Delta H. sapiens/NOTCH4 D. melanogaster/Serrate 100 M. musculus/Notch4 100 H. sapiens/JAG2 D. melanogaster/Notch 51 84 M. musculus/Jag2 C. elegans/LIN-12 93 G. gallus/Jag2 100 C. elegans/GLP-1 83 82 X. tropicalis/Jag2 0.20 37 D. rerio/Jag2b 90 89 D. rerio/Jag1a D. rerio/Jag1b 92 G. gallus/Jag1 X. tropicalis/Jag1 89 H. sapiens/JAG1 51 99 M. musculus/Jag1 C. elegans/APX-1 100 C. elegans/ARG-1 C. elegans/DSL-4 C. elegans/LAG-2 CC. elegans/DSL-2 43 33 C. elegans/DSL-1 91 C. elegans/DSL-7 28 C. elegans/DSL-3 C. elegans/DSL-5 51 58 C. elegans/DSL-6 0.5 Fig.1.TheevolutionofNotchreceptorsandligands.ProteinsequencesofNotchreceptors(A)andligands(B)werealignedusingmultiplesequence alignmentbyMAFFTL-INS-Ianddefaultparameters(http://www.genome.jp/tools/mafft/).Theevolutionaryhistorywasinferredusingthemaximumlikelihood methodbasedontheJTTmatrix-basedmodel(Jonesetal.,1992).Thepercentageoftreesinwhichtheassociatedtaxaclusteredtogetherisshownnexttothe branches.Initialtree(s)fortheheuristicsearchwereobtainedautomaticallybyapplyingneighbor-joinandBioNJalgorithmstoamatrixofpairwisedistances estimatedusingaJTTmodel,andthenselectingthetopologywithsuperiorloglikelihoodvalue.Thetreesaredrawntoscale,withbranchlengthsmeasuredinthe numberofsubstitutionspersite.Allpositionscontaininggapsandmissingdatawereeliminated.Therewereatotalof940positionsinthefinaldatasetAand163 inB.EvolutionaryanalyseswereconductedinMEGA7(Kumaretal.,2016).GroupsofvertebratereceptorsandligandsclusteringwithindividualhumanNOTCH receptorsandJAGGEDandDLLligandsareenclosedinseparatebrackets.Foraccessionnumbers,pleaseseeTableS1. condition now known as terminal transverse limb deficiencies. congenita)andapartialabsenceofskullbones(Fig.4A).Theskinis These defects were attributed to amniotic band or umbilical cord most significantly affected in the skull region, though the aplasia constrictionoftheextremities(amnioticbandsyndrome).In1945, cutiscongenitamayalsoaffecttheskinontheabdomen.Typically, ClarencePaulOliverandForrestH.Adamsdescribedapatientwith bybirth,theaffectedskinregionresembleshealedbutscarredskin, anomaliesinthefeetandonehand,andalsoadenudedareaofthe and a skin biopsy reveals absent epidermis, dermal atrophyand a scalp, with a thinner skull. Most importantly, they showed that lackofskinstructuresandelasticfibers.However,symptomsrange T N multiplefamilymembershadsimilarsymptoms,andsuggestedthat from acomplete absence of skin to patches of skin that lack hair. E theconditionwashereditary(AdamsandOliver,1945).Sincethen, Similarly,skullsymptomsmayrangefromanabsenceofskulltoa M the diagnosis, genetics and underlying biology of Adams-Oliver near-normal skull (Lehman et al., 1993). In addition, some P syndrome,asithascometobeknown,hasbecomemorecomplex. individuals have vascular anomalies, including dilated surface O blood vessels, which give the skin a marbled appearance (cutis L E CharacteristicsandgeneticsofAdams-Oliversyndrome marmoratatelangiectatica),pulmonaryorportalhypertension,and V Adams-Oliversyndromeisdiagnosedbasedonterminaltransverse retinal hypervascularization; around 23% have congenital heart E D limb malformations, an absence of skin (termed aplasia cutis defects.IthasbeensuggestedthatmostsymptomsofAdams-Oliver 1744 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 A Notch receptors B Notch ligands Fig.2.ThehumanNotchrepertoire. Proteindomainarrangementofhuman NOTCH1 TM JAG1 TM Notchreceptors(A)andligands(B). (2555 aa) NRR (1218 aa) EGF-like StructuresarebasedonInterPro SP EGF-like repeats ANK PEST repeats proteindomainpredictionandother LNR HD RAM TAD MNNL DSL vWFCJSD PDZL studies(Ehebaueretal.,2005; 36 SP Lubmanetal.,2005).ANK,ankyrin 16 repeats;DLL,Delta-likeprotein;DSL, Delta/Serrate/LAG-2domain;EGF, NOTCH2 JAG2 epidermalgrowthfactor;HD, (2471 aa) Two isoforms (1238/1200 aa) heterodimerizationdomain;JAG, jagged;JSD,JaggedSerratedomain; 36 16 LNR,Lin-Notchrepeats;MNNL,Notch ligandN-terminaldomain;NRR, NOTCH3 negativeregulatoryregion;PDZL,PDZ DLL1 (2321 aa) liganddomain[PDZ,postsynaptic (723 aa) densityprotein(PSD95)];PEST, 34 8 proline(P),glutamicacid(E),serine(S) andthreonine(T)degradationdomain; NOTCH4 RAM,Rbp-associatedmolecule (2003 aa) DLL3 domain;s,cleavagesite;SP,signal peptide;TAD,transactivationdomain; Two isoforms 29 TM,transmembranedomain;vWFC, (618 aa/587 aa) 6 vonWillebrandfactortypeCdomain. DLL4 (685 aa) s1s2s3 8 syndromeareduetoimpairedcirculation(Pateletal.,2004;Stittrich 2016). However, in families with either familial Adams-Oliver etal.,2014;Swartzetal.,1999). syndrome or congenital heart disease, asymptomatic family Thisraregeneticdisordercanbeautosomaldominant,autosomal members bearing the disease-causing mutations have been recessiveorcausedbydenovomutations.Theautosomalrecessive reported, demonstrating that penetrance is not 100%. This is forms are caused by mutations in EOGT, which encodes a similar to Alagille syndrome (discussed below), in which family componentoftheNotchpathway,orinDOCK6,whichencodesa members sharing the same JAG1 mutations can present with regulatorofRhoGTPasesignaling(Lehmanetal.,2014;Shaheen differentsymptoms,orevenbeasymptomatic. et al., 2011, 2013; Sukalo et al., 2015a,b), whereas the dominant WhyareNOTCH1mutations,andindeedotherNotchcomponent formsarecausedbymutationsinNOTCH1,RBPJorDLL4,allof mutations, not 100% penetrant? The linear Notch signaling which are Notch pathway components, or in ARHGAP31, which pathway, which does not include signal-amplification steps, is encodes another Rho GTPase regulator (Hassed et al., 2012; Isrie exquisitelydosesensitive.Geneticandenvironmentalfactorsthus et al., 2014; Meester et al., 2015; Southgate et al., 2011, 2015; likely shift the intrinsic duration or strength of Notch signaling, Stittrich et al., 2014). In the case of DLL4, it was noted that the alteringmutationtoleranceindifferentindividuals.Indeed,screens disease-associated mutations are distributed throughout the ligand formodifiersofNotch-dependentphenotypesorsignalingpersein (Meester et al., 2015; Fig. 4B), and so far no distinct pattern of Drosophila (Go and Artavanis-Tsakonas, 1998; Shalaby et al., mutationhasbeenidentified.However,somegenotype-phenotype 2009), mouse (Rubio-Aliaga et al., 2007) and in vitro (Mourikis correlationsarebeginningtoemerge.Forexample,individualswith et al., 2010) have revealed many candidate modifiers of Notch- NOTCH1 mutations more often have cardiac defects compared to dependentdisease.Forexample,lossofItch(anegativeregulatorof individuals with ARHGAP31 or DOCK6 mutations (Southgate Notch signaling) in mice interacts with gain of Notch1 in etal.,2015).Together,themutationsdiscoveredthusfaraccountfor developing thymocytes to produce autoimmune disease, while ∼50%ofpatients,suggestingthatmoreassociatedgenesarelikely loss of one allele of Dll3 in Notch1 heterozygous mice results in tobediscovered. axial segmentation defects in 30% of double heterozygous mice It should be noted that NOTCH1 mutations can also cause an (Loomesetal.,2007a).ThissuggeststhatNotchsignalingstrength, array of isolated cardiovascular defects, including aortic valve whichcanbemodifiedbytheseinteractions,translatesintoagiven defects, hypoplastic left heart syndrome and tetralogy of Fallot output.Insupportofthis,ithasbeenshownthat,inthehaemogenic (Gargetal.,2005;Kerstjens-Frederikseetal.,2016;McBrideetal., endothelium of mice, distinct levels of Notch signal activation in T N 2008;McKellaretal.,2007;Mohamedetal.,2006).Suchmutations response to Jag1 versus Dll4 create a switch between acquiring a E includemissense,nonsenseandtruncationmutations,implyingthat haemogenicversusanarterialendothelialfate(Gama-Nortonetal., M heterozygouslossofNOTCH1functioncanleadtoeitherAdams- 2015).ItisthuslikelythatmodificationstogenesthatimpactNotch P Oliver syndrome (Fig. 4C) or congenital heart defects. Further signalingalsoimpactdiseasepresentation. O supportingtheideathatgivenmutationsmaycauseheartdefectsor L E Adams-Oliver syndrome, it has been shown that ARHGAP31 ThebiologyofAdams-Oliversyndrome:insightsfromknockoutmice V mutations lead to both Adams-Oliver syndrome (Southgate et al., Notch1, Dll4 and Rbpj, or their homologs, are required for the E D 2011) and congenital heart defects (Kerstjens-Frederikse et al., embryonic development of most animal models (Conlon et al., 1745 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 This is in stark contrast to an earlier study in which the use of anotherTie2-Crestrain(Limbourgetal.,2005)suggestedthatloss Signal-sending cell ofendothelialNotch1wasthesolecauseofembryonicdeathseenin Notch ligand null mice; however, it was subsequently noted that the Tie2 promoterusedinthisstrainisalsoactiveinthefemalegermline(de NCSTN γ-Secretase Langeetal.,2008). PSEN 1 complex VasculardevelopmentisclearlyabrogatedbylossofNotch1,and PEN2 these studies in mice beg the question of whether defective vasculature is the underlying cause of Adams-Oliver syndrome. Notch receptor APH1 Signal-receiving cell Thishypothesiswassuggestedbeforethefirstcausativegeneswere identified(Swartzetal.,1999),andhasmorerecentlybeenrefined tosuggestthatpericytedysfunction,inparticular,isthemaindriver NICD ofbothscalpandskulldefects,aswellaslimbdefectsinhumans (Pateletal.,2004;Stittrichetal.,2014).Infurthersupportofthis, thetransientsilencingofNotchsignaling(usingdominantnegative Nucleus Maml)invascularsmoothmusclecell(vSMC)precursorsinhibits NICD RBPJκ their differentiation and leads to hemorrhages in the head and MAML interdigital space (Chang et al., 2012). However, mesenchymal DNA Notch1andNotch2(Panetal.,2005)areactivatedbyJag2(Jiang et al., 1998; Sidow et al., 1997) to regulate limb development through Rbpj, indicating that several Notch-regulated processes mayacttogethertocontrollimbdevelopment. Various studies have indicated that Notch1 signaling also has essential roles in skin development (reviewed by Nowell and Fig.3.ThecoreNotchpathway.ThecanonicalNotchsignalingpathwayisat itscoreastraightforwardsignalingmechanisminwhichaNotchligandona Radtke, 2013). Notch1 deletion in murine skin leads to tumors signal-sendingcellbindstoaheterodimericNotchreceptoronacontacting (Demehri et al., 2009; Nicolas et al., 2003) and atopic dermatitis signal-receivingcell.BindingleadstocleavageofthereceptorbyADAM (Dumortieret al., 2010), suggesting that individuals with Adams- secretase(notpictured)andsubsequentcleavagebytheγ-secretase Oliversyndromeshouldbeassessedforriskofskinmalignanciesor complex,whichiscomposedofnicastrin(NCSTN),presenillinenhancer2 skin conditions, as they may be predisposed to developing skin (PEN2),presenillin1(PSEN1)andanteriorpharynx1(APH1).Cleavage conditions. In addition, considering that neonatal silencing of releasestheNotchintracellulardomain(NICD),whichtranslocatestothe nucleustoactivatethetranscriptionoftargetgenes,actingtogetherwith Notch1leadstoareducedthymusandblockedT-celldevelopment recombinationsignalbindingproteinforimmunoglobulinkappaJregion (Radtkeetal.,1999),itisremarkablethatAdams-Oliverpatientsdo [RBPJκ,alsoknownasCSLforCBF1/Su(h)/LAG-1]andtheco-activator notexperiencethymicinsufficiency. mastermind-like(MAML). Overall,thephenotypesofmousemodelssuggestthatthevarious symptomsofAdams-Oliversyndromereflectthedose-sensitiverole 1995; Dexter, 1914; Gale et al., 2004; Oka et al., 1995; Swiatek of the Notch pathway in the development of the vasculature. etal.,1994),andthesemodelshavebeeninvaluableforelucidating Targeting the developing vasculature may prove difficult themechanismsdrivingAdams-Oliversyndrome.WhileNOTCH1, therapeutically, and current treatment options typically include DLL4 and RBPJ mutations cause autosomal dominant disease in surgery to close the scalp or skull, or heart surgery. While many humans,inmiceonlyDll4mutationresultsinaseverephenotypein currentclinicaltrialsfocusoninhibitionofNotchsignalingthrough theheterozygousstate(Galeetal.,2004),althoughinthiscaseitis small-molecule inhibitors or antibodies (Andersson and Lendahl, soseverethatmostheterozygousDll4knockoutmicedieinutero. 2014),therapeuticactivatorsofNotchsignalinghaveprovenmore Similarly, Dll4 heterozygous-null mice display background- difficult to develop – but may prove beneficial to transiently and dependentembryoniclethality,withimpairedvascularremodeling preciselyboostvasculardevelopment. andembryonicgrowthretardation(Duarteetal.,2004;Kochetal., 2008;Krebs etal.,2004). Dll4knockoutmicegeneratedfrom the AlagilleandHajdu-Cheneysyndromes:rolesforNOTCH2and few surviving heterozygous mice die by embryonic day (E) 10.5 JAG1indevelopment exhibiting growth delay, smaller hearts and a failure to undergo Alagille syndrome and Hajdu-Cheney syndrome are autosomal vascular remodeling (Duarte et al., 2004). These studies, together dominant, multisystem disorders with an extensive overlap of with various other studies of Notch signaling during vascular affected tissues. Alagille syndrome (also known as Alagille- development (summarized in Box 1) reveal that dose-sensitive Watson syndrome or arteriohepatic dysplasia) is characterized Dll4-inducedNotch1signalingisrequiredforarterialdevelopment by defects in the liver, eyes, ears, kidneys, pancreas, heart, andgrosssurvival. vascular system,faceandskeleton,aswellasbydelayedgrowth Notch1 homozygous knockout mice are also embryonic lethal (Fig. 5) (Alagille et al., 1975; Watson and Miller, 1973; for a T N priortoE11(Conlonetal.,1995;Swiateketal.,1994),andthisis review, see Penton et al., 2012). Individuals with Hajdu-Cheney E recapitulated in processing-deficient Notch1 embryos (Huppert syndrome, on the other hand, suffer from osteoporosis and M etal.,2000)andinRbpj−/−embryos(Okaetal.,1995),indicating progressive focal bone destruction, defective craniofacial P that canonical Notch1 signaling is required for vascular development, heart defects, hearing deficits and renal cyst O development and embryonic survival. However, endothelial formation (Cheney, 1965; Hajdu and Kauntze, 1948; for a L E deletion of Notch1 using a Tie2-Cre specifically expressed in review,seeCanalisetal.,2014). V endothelialcellsisfarlesssevereand50%ofthesemicesurvivefor These two syndromes represent two sides of the same coin. E atleast8weeks,albeitwithvascularanomalies(Alabietal.,2016). AlagillesyndromeiscausedbyhaploinsufficiencyforJAG1(∼94% D 1746 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 Table1.GeneticdisordersassociatedwithmutationsinNotchreceptorsorligands Disease Prevalence Gene Inheritance Frequency Notcheffect Symptoms Adams-Oliversyndrome 0.44:100,000 NOTCH1 AD 23% Lossoffunction Underdevelopedskulland (Martínez- (Southgate absentorscarredskin Fríasetal., etal.,2015; (aplasiacutiscongenita)in 1996) Stittrichetal., headregion,terminal 2014)(OMIM transverselimbdefects 616028; (AdamsandOliver,1945). AOS5) Autosomaldominantforms RBPJ(Hassed AD <10% arealsocausedby etal.,2012) mutationofEOGT(AOS4), (OMIM ageneencodinganO- 614814; GlcNActransferasethat AOS3) post-translationally DLL4(Meester AD 10% modifiesNotchreceptors. etal.,2015) Recessiveformsare (OMIM causedbyARGHAP31 616589; andDOCK6mutation AOS6) (Fig.3). Alagillesyndrome 1-3:100,000 JAG1(Lietal., AD 94%(Warthen Lossoffunction Bileductpaucity,heart 1997;Oda etal.,2006) malformations, etal.,1997) characteristicfacial (OMIM features,butterfly 118450; vertebraeandposterior ALGS1) embryotoxon(Alagille NOTCH2 AD 2% etal.,1975)(Fig.4). (McDaniell etal.,2006) (OMIM: ALGS2) Aorticvalvedisease 1-2:100(twiceas NOTCH1(Garg AD 8-15% Lossoffunction InAOVD,aorticvalveshave commonin etal.,2005) twoinsteadofthreeleaflets males (OMIM (bicuspidaorticvalves). comparedwith 109730; Thiscanbebenignorlead females) AOVD1) toaorticvalvestenosisor insufficiency,andinmore severecasescanleadto hypoplasticleftheart syndrome(Emanueletal., 1978). Cerebralautosomal- 2-4:100,000 NOTCH3(Joutel AD 100% NOTCH3 Defectsinsmallcerebral dominantarteriopathy (Bianchietal., etal.,1996) oligomerization, arteriesleadtosubcortical withsubcorticalinfarcts 2015;Kalimo (OMIM possible infarctsandwhitematter and etal.,2002; 125310; neomorph damage.Vascular leukoencephalopathy Razvietal., CADASIL1) dementiainone-thirdof (CADASIL) 2005) patientsovertheageof60. Maleshaveincreasedrisk ofdiseaseprogression. Smallarteriesinallorgans areaffected,butsymptoms areneurologicaland limitedtothebrain. Early-onsetarteriopathy Onepatient NOTCH3 AR Unknown Lossoffunction Thepatienthadchildhood- andcavitating described (Pippucci onsetarteriopathyand leukoencephalopathy etal.,2015) severecavitating leukoecephalopathy. Parentswere heterozygouscarriers (fatherhadsome CADASIL-likesymptoms). Hajdu-Cheneysyndrome Unknown,few NOTCH2(Isidor AD 92%(Isidor Gainoffunction HJCYS:acro-osteolysis(loss T andserpentinefibula patients etal.,2011a; etal.,2011a; ofbonetissue)particularly N polycystickidney described Majewski Majewski inhandsandfeet, E syndrome etal.,2011; etal.,2011; osteoporosis,craniofacial M Simpsonetal., Simpson dysmorphology,kidney P 2011)(OMIM: etal.,2011) defectsandtoothloss O 102500; (Cheney,1965;Hajduand L E HJCYS) Kauntze,1948). V Continued E D 1747 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 Table1.Continued Disease Prevalence Gene Inheritance Frequency Notcheffect Symptoms NOTCH2(Gray AD 100%(Isidor SFPKS:skeletaldysplasia etal.,2012; etal.,2011b; characterizedbyelongated Isidoretal., Narumietal., serpentinefibulae,with 2011b) 2013;Wang polycystickidneysand (SFPKS) etal.,2011) dysmorphicfacialfeatures. (5/5,all female) Infantilemyofibromatosis 0.25- NOTCH3 AD 11%[1/9 Gainoffunction Mesenchymeproliferation andlateralmeningocele 0.67:100,000 (Martignetti (Cheung defectsleadingtobenign syndrome(alsoknown etal.,2013) etal.,2013; tumorsinskin,muscleand asLehmansyndrome) (OMIM:IMF2) Martignetti bone.Canalsoleadto etal.,2013)] tumorsininternalorgans, thenwithpoorprognosis (mortalityrate>70%). Rarelyhereditary,usually spontaneous.When geneticitis,moreoften associatedwithaPDGFRB mutation(Martignettietal., 2013). Unknown,few NOTCH3(Gripp Denovo 100%(6/6,all Distinctivefacialfeatures: patients etal.,2015) male) elongatedskull,widely described (OMIM spacedeyes,drooping 130720; eyelids,jawmisalignment LMNS) (micro-retrognathia),high- archedpalate,longflat verticalgroovebetweenthe baseofthenoseandthe edgeoftheupperlip,and low-setears. Hyperextensibility, hypotoniaandprotrusions ofthearachnoidanddura throughspinalforamina (characteristiclateral meningoceles). Spondylocostaldysostosis Unknown,few DLL3(Bulman AR 70% Lossoffunction Axialskeletaldisorders,with (alsoknownasJarcho- patients etal.,2000) (Turnpenny vertebralsegmentation Levinsyndrome,JLS) described (OMIM etal.,2013) defect,shortenedthorax 277300; andribmisalignment.Can SCDO1) resultindecreased numbersofribsand variableintercostalfusion (Rimoinetal.,1968).Can alsobecausedby mutationsinHES7 (SCDO4),LFNG(SCDO3), MESP2(SCDO2),TBX6 (SCDO5)andRIPPLY2 (SCDO6).JLSalso includesspondylothoracic dyostosis. AD,autosomaldominant;AR,autosomalrecessive;ARHGAP31,RhoGTPaseactivatingprotein31;DLL,Delta-like;DOCK6,dedicatorofcytokinesis6;EOGT, EGFdomain-specificO-linkedN-acetylglucosaminetransferase;HES7,HesfamilybHLHtranscriptionfactor7;JAG1,jagged1;LFNG,lunaticfringehomolog (O-fucosylpeptide3-beta-N-acetylglucosaminyltransferase);MESP2,mesodermposteriorbHLHtranscriptionfactor2;PDGFRB,plateletderivedgrowthfactor receptorβ;RBPJ,recombinationsignalbindingproteinforimmunoglobulinkappaJregion;TBX6,T-box6;RIPPLY2,ripplytranscriptionalrepressor2. of cases) (Li et al., 1997; Oda et al., 1997) or by mutations in are likely a reflection of the varied and indispensable roles – as T NOTCH2 (∼2% of patients) (McDaniell et al., 2006), and is revealedbyvariousinvitrostudiesandknockoutstudiesinanimal N E consideredtobeaNotchloss-offunctionphenotype(Fig.6A).By models–ofJag1andNotch2indevelopmentalprocesses. M contrast,Hajdu-Cheneysyndrome,whichisdrivenbyproductionof P a stabilized NOTCH2 lacking a functional PEST degradation Notch2andJag1functionintheliver O domain, is caused by gain-of-function mutations in NOTCH2 Mammalianliverdevelopmentisacomplexprocessthatisregulated L E (Fig.6B)(Grayetal.,2012;Hanetal.,2015;Isidoretal.,2011a,b; by multiple signaling pathways, including the Notch pathway. V Majewskietal.,2011;Simpsonetal.,2011).Aswehighlightbelow, Notch signaling is, in particular, tightly linked with the E D thevastnumberoftissuesandorgansaffectedinthesesyndromes development of bile ducts (reviewed by Gordillo et al., 2015). In 1748 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 Table2.ComponentsoftheNotchpathwayarecrucialforhuman (POGLUT1,alsoknownasRumi),andthatreducedRumilevelsin development Jag1+/−/Rumi+/− animals rescue the biliary phenotype of Jag1- deficient animals. Notch2 deficiency leads to bile duct agenesis Missenseconstraint Loss-of-functionconstraint CNV Gene (z) (pLI) (z) perinatallyandsecondarybileductformationafterweaning(Falix etal.,2014),aprocessthatappearstobeNotchindependent(Walter NOTCH1 4.48 1.00 −0.79 etal.,2014).Asimilarrecoveryoftheliverphenotypewithagehas NOTCH2 3.78 1.00 nan NOTCH3 4.79 0.21 0.97 been reported in individuals with Alagille syndrome (Riely et al., NOTCH4 2.45 0.00 −0.28 1979), although it is not yet clear which JAG1 or NOTCH2 JAG1 4.05 1.00 0.62 genotypes,ifany,arelinkedtorecovery. JAG2 2.63 0.99 −1.54 DLL1 2.23 1.00 0.69 RolesforNotch2andJag1inthedevelopmentofsensoryorgans DLL3 2.62 0.00 0 Individuals with Alagille syndrome exhibit inner ear and eye DLL4 3.24 0.98 0.93 PSEN1 1.81 1 1.25 defects,highlightingrolesforJag1andNotch2inthedevelopment PEN2 1.05 0.54 −0.25 of sensory organs. One of the most easily observed hallmarks of APH1A 2.41 0.13 0.24 Alagille syndrome – posterior embryotoxon (an irregularity of APH1B −0.86 0 0.88 Schwalbe’sline)–isabenigndefectthatisrelativelycommoninthe NCSTN 1.39 1 1.48 general population (Emerick et al., 1999; Ozeki et al., 1997). RBPJK 3.73 1 0.64 MAML1 −0.03 1 0.16 However,itshouldbenotedthatposteriorembryotoxonisdifficult MAML2 −1.32 1 0.34 tostudyinrodents,whichinsteadmanifesteyedefects,suchasiris MAML3 0.77 0.33 0.2 abnormalities(Xueetal.,1999).Jag1andNotch2areexpressedin thedevelopinglensandciliarybody(CB),andNotch2isexpressed TheExomeAggregationConsortium(EXAC)haveaggregatedand harmonizedsequencingdatafrom60,706individuals,andestablishedan in the retinal pigmented epithelium (RPE) (Le et al., 2009; onlineresourceallowinginvestigationofhowcommonorraremutationsin Saravanamuthu et al., 2012). During development, the Jag1- specificgenesare(http://exac.broadinstitute.org/,version0.3.1).Lossof expressing inner CB interacts with the Notch2-expressing outer functionwasdefinedasnonsensemutation,spliceacceptorsandsplice CB(derivedfromRPE)toregulateproliferationandBMPsignaling donors.Foreachgene,EXACpredictshowmanymutationsareexpectedina during CB morphogenesis (Zhou et al., 2013). It has also been givengene,andcomparesthiswithhowmanywereactuallyobservedinthe shownthattheectoderm-specificdeletion(usingAp2a-Cre)ofJag1 sampledpopulations.Fromthis,aconstraintmetriciscalculated(loss-of- functionconstraint,pLI),where<0.9(nohighlight)istoleranttolossoffunction, results in arrested separation of the lens vesicle from the surface andvalues>1(gradedfromyellowtored)denoteextremeintolerancetolossof ectodermandanarrestinlensdevelopment(Leetal.,2012).Notch2 function(haploinsufficientgenes).Missenseandcopynumbervariant(CNV) deletioninthelens(viaLens-Cre)alsodisruptslensdifferentiation constraint(z)aregreaterthan0iffewermutationswerefoundthanexpected, (Saravanamuthuetal.,2012),althoughthisphenotypeissimilarto andlessthan0ifmoremutationswerediscoveredthanexpected.Twoofthe the phenotype of the heterozygous Lens Cre-expressing mouse fourNotchreceptors,andfourofthefiveligandsinhumans,areextremely strainitself(Doràetal.,2014). intoleranttolossoffunction.ItisnoteworthythatNOTCH3isrelatively Jag1 and Notch2 also regulate inner ear development. Deafness unconstrainedwhenitcomestolossoffunctionmutations,buthighly constrainedwhenitcomestomissensemutations,inlinewithourcurrent and impaired balance have been identified in fourethylnitrosourea understandingofCADASIL.Similarly,γ-secretasecomponentsand (ENU)-induced Jag1 mutant mouse strains: Slalom (Tsai et al., transcriptionfactorcomplexcomponentsarelargelyintoleranttolossof 2001),Headturner(Kiernanetal.,2001),Ozzy(Vrijensetal.,2006) function.APH1,anteriorpharynx1;DLL,delta-like;JAG,jagged;MAML, and Nodder (Hansson et al., 2010). These phenotypes are caused mastermindlike;nan,notanumber(datainsufficient);NCSTN,nicastrin;PEN, whenJag1-dependentNotchsignalingfailstodefinethepresumptive presenilinenhancer;PSEN,presenilin;RBPJ,recombinationsignalbinding sensory epithelium of the ear and maintain an appropriate ratio of proteinforimmunoglobulinkappaJregion. proliferationbetweenpopulationsofhaircellsandsupportingcells, via Hes1-dependent expression of p27kip (Brooker et al., 2006; mice, the initiation of Jag1 expression in the portal vein Kiernan et al., 2006; Murata et al., 2009; Pan et al., 2010). mesenchyme (PVM) marks the onset of bile duct development Conversely, expression of Notch1ICD (Notch1 intracellular aroundE12.5(Hofmannetal.,2010;Zongetal.,2009).Here,Jag1 domain) in the developing otic vesicle causes ectopic formation interactswithNotch2inadjacentbiliaryepithelialcellstoinducethe ofsensoryandsupportivecellsinthecochleaandvestibule(Pan expressionofHes1,Hnf1βandSox9,whichfurtherregulateductal et al., 2010), offering a possible explanation for the hearing plateformationandintrahepaticbileductmorphogenesis(Antoniou deficits found in Hajdu-Cheney patients (Isidor et al., 2011a). etal.,2009;Geisleretal.,2008;Kodamaetal.,2004;Zongetal., Sensory organ development shows similar dose-sensitivity to 2009).Jag1isrequiredspecificallyinthePVMandnotintheportal other Notch-regulated processes, wherein a carefully titrated, vein endothelium (Hofmann et al., 2010) nor in biliary epithelial moderate reduction of Notch signaling activity mediated by the cells(Loomesetal.,2007b),whereitisneverthelessalsoexpressed. glycosyltransferaseslunaticfringe(Lfng)andmanicfringe(Mfng) Compound heterozygous Jag1 and Notch2 hypomorphic mice creates a border between the prosensory primordium of the mimic several features of Alagille syndrome, including jaundice, cochleardomainandtheKölliker’sorgan.Thisoccurspriortothe T N growth retardation, disrupted differentiation of intrahepatic bile fate decision of the first differentiating inner hair cells and their E ducts, and heart, eye and kidney defects (McCright et al., 2002). associatedsupportingcells,affirmingthesensitivityofthisorgan M Interestingly, similar to other Jag1 phenotypes (Kiernan et al., to even very mild changes in Notch signaling intensity (Basch P 2007), the biliary phenotype is highly background dependent, as et al., 2016). It is also worth noting that truncated posterior O backcrossing of Jag1+/− into a C57BL/6J background results in semicircularcanalsandmissingampullaeareobservedinJag1del1/+ L E defects similar to those observed in Jag1/Notch2 double andFoxg1Cre+/−;Jag1fl/+heterozygousmice(Kiernanetal.,2006), V heterozygotes (Thakurdas et al., 2016). This study also revealed andthattheseverityofthevestibularphenotypeinJag1del1/+mice E D thatJag1stabilityisnegativelyregulatedbyO-glucosyltransferase1 dependsongeneticbackground. 1749 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 A Adams-Oliver syndrome hallmarks Fig.4.Adams-Oliversyndrome.(A)Thehallmarksof Adams-Oliversyndromeincludeabsentorscarredskin, Thin skull Absent or scarred skin usuallyoccurringinthescalpregion,withanunderlyingthin Terminal transverse limb defects skull,andterminaltransverselimbdefects.Terminal transverselimbdefectscanresembleamputations,and Syndactyly Absent digit Fused toes Missing toes patientsmayalsohavesyndactyly.Adams-Oliversyndrome canbecausedbymutationsinDLL4(B)orinNOTCH1(C), aswellasinRBPJ,EOGT,ARHGAP31orDOCK6(not pictured).DLL4mutationsappearmorerandomly distributedintheligand,evenincludingtwotruncation mutationsoftheC-terminaldomain.NOTCH1mutationsare mostoftenmissensemutationsincysteines,especiallyin EGFrepeat11,inparticularintheligand-bindingdomain. However,truncationmutations,splicesitesandentire deletionsarealsoinvolvedinAdams-Oliversyndrome. B DLL4 mutations Mutationsknowntohaveincompletepenetranceareingray. Asterisksindicatestop;fsisframeshift.NOTCH1andDLL4 F195L C390R/C390Y structuresarebasedonInterProproteindomainprediction A121P R186C P267T C455W Q554* andotherstudies(Ehebaueretal.,2005;Lubmanetal., R558* 2005).ANK,ankyrinrepeats;DSL,Delta/Serrate/LAG-2 8 EGF-like domain;EGF,epidermalgrowthfactor;fs,frameshift;HD, SP MNNL DSL repeats heterodimerizationdomain;LNR,Lin-Notchrepeats;MNNL, NotchligandN-terminaldomain;NRR,negativeregulatory EGF-like region;PEST,proline(P),glutamicacid(E),serine(S)and repeats TM threonine(T)degradationdomain;RAM,Rbp-associated moleculedomain;SP,signalpeptide;TAD,transactivation C NOTCH1 mutations domain;TM,transmembranedomain. NRR TM 10 20 30 LNR HD SP 36 EGF-like repeats RAM ANKTAD PEST P407R C4Y5565Y0* C1374R M1580Ifs*30 S2017Tfs*9 E1555* C449R D1989N R448Q EGF11 C1496Y C429R A1740S Notch2andJag1functionduringkidneydevelopment experiments.Itshouldalsobenotedthat,althoughMETcanoccur Kidney development is tightly regulated by Notch signaling and, without Notch signaling (Cheng et al., 2007; Chung et al., 2016), althoughitisnotadiagnosticcriteria,manyindividualswithAlagille NotchsignalingcanreplacetheWnt/β-cateninpathwayduringMET syndromesufferfromseriouskidneyproblems(Kamathetal.,2013). (Boyleetal.,2011),anditsactivityinmedialandproximalsegments, During kidney development, Notch2 is first expressed in the which is promoted by BMP signaling, is mutually exclusive, with brancheduretericbudandthesurroundingcapmesenchyme,while highlevelsofWnt/β-cateninsignaling(Lindströmetal.,2015). Jag1expressionarises,togetherwithNotch2andNotch1expression, WhilethestudiesdescribedabovehighlightkeyrolesforNotch2 inepithelialvesicles(theaggregatesderivedfromcapmesenchyme andJag1inkidneydevelopment,itisnotclearhowspecifichuman via mesenchymal-to-epithelial transition – MET). These vesicles mutationsassociatedwiththesesyndromesleadtokidneydefects.For transformthroughthestagesofcomma-shapedbodiesandS-shaped example, no kidney phenotype was described in the Hajdu-Cheney bodiesintofullydevelopednephronsinwhichJag1isfoundinthe syndrome mouse model harboring the Notch2Q2319X mutation glomerularendothelium,andbothNotch1andNotch2arefoundin (Canalisetal.,2016).Nonetheless,severalresultsillustratethathigh glomerular epithelial cells (extensively reviewed by Kamath et al., levelsofNotchsignalingnegativelyimpactonkidneydevelopment. 2013;Kopanetal.,2014).Consistentwiththeseexpressionpatterns, Forexample,constitutivelyactiveNotch1ICD(Chengetal.,2007)or itwasshownthatmicehaploinsufficientforNotch2andlackingone Notch2ICD(Fujimuraetal.,2010)inthemetanephricmesenchyme allele of Jag1 exhibit defective glomerulogenesis (McCright et al., (Six2-GFP::Cre) drive pathological kidney development. While 2001),whilethecapmesenchyme-specificdepletionofNotch2,but overexpression of Notch1ICD drives single ureteric bud formation, not Notch1, blocks the development of podocytes and proximal accompanied by excessive proximal tubule transformation into tubulespriortoS-shapedbodyformation,resultinginearlypostnatal podocytes and distal tubules (at the expense of mesenchymal lethality(Chengetal.,2007).Intriguingly,bothNotch1andNotch2 progenitor differentiation) (Cheng et al., 2007), an over-abundance T N areactivatedbyeitherJag1orDll1(Liuetal.,2013),sothisunequal of Notch2ICD upregulates Wnt4 expression at E11.5, causing E requirement for Notch1 and Notch2 signaling during renal premature tubule differentiation and depletion of nephron M developmentisprobablycausedbydifferencesintheirextracellular progenitorsbyE14.5,followedbyformationofnumerouscystsand P domainsorinteractionwiththeLfng,orboth.Indeed,Lfngenhances generaldeteriorationofthekidney(Fujimuraetal.,2010). O Notch2-mediatedsignalingtoagreaterextentthanNotch1-mediated L E signaling, and thus may be a key factor in allowing it to reach the Notch2andJag1inthepancreas V thresholdrequiredforinductionofproximalstructureformation(Liu Impaired pancreatic function in Alagille syndrome was generally E D et al., 2013). However this remains to be tested in genetic consideredcommon(Rovneretal.,2002),andpancreatitishasalso 1750 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 observed in individuals with Alagille syndrome (Bauer et al., Box1.TheNotchpathwayandvasculardevelopment 2010), it has been shown that the development of several compartments of the heart is dependent on the balanced Notch1/4+ endothelial cells activitiesofJag1andNotch2. Dll1+ AblationofJag1expressionintheendocardiumleadstooutflow phalanx cells Jag1+ stalk cell tract (OFT)defects,aorticvalvehyperplasticity,tetralogyofFallot and valve calcification, recapitulating the spectrum of cardiac pathologies often present in Alagille syndrome (Hofmann et al., Dll4+ tip cell 2012; MacGrogan et al., 2016). These phenotypes are, at least Vascular smooth muscle cells Pericytes (they wrap around the blood vessel) partially, linked to cardiac neural crest (CNC) cells, a highly Notch1/2/3+ Jag1+ mural cells migratorycellpopulationthatoriginatesfromtheneuralplateborder Notch signalingcontrolsmostaspectsofvasculardevelopment,from (Jiang et al., 2000). CNC-specific deletion (using Pax3-Cre) of vasculogenesis and angiogenesis to arterial identity and mural cell either Jag1 (Manderfield et al., 2012) or Notch2 (Varadkar et al., attachment, identity and maintenance. For example, during sprouting 2008)revealedthattheyarenotrequiredforCNCmigrationperse, angiogenesis, Dll4+ endothelial tip cells extend numerous filopodia butthatJag1isakeyinducerofCNC-derivedvSMCdifferentiation. sproutingforwardswhiletrailingJag1+stalkcellsproliferatetoformthe Notch2-mediated signaling, meanwhile, maintains vSMC vesseltrunk.Vascularendothelialgrowthfactor(VEGF)upregulatesDll4 proliferation around the aortic arch arteries and OFT (Varadkar in tip cells, which activate Notch1 on adjacent stalkendothelial cells, et al., 2008). Impaired Jag1 and Notch2 signaling also results in downregulatingVEGFreceptor2/3(VEGFR2/3)andsuppressingthetip cell phenotype in these trailing cells. Accordingly, Dll4 and Jag1 ventricular septation defects, aortic arch patterning defects and mutations lead to blood vessel architectural defects, in both mouse pulmonary artery stenosis, all of which are conditions present in modelsandhumandisease.Notchsignalingisalsoimportantinmural individuals with Alagille syndrome (Manderfield et al., 2012; cells:Notch3+muralcells,suchasvascularsmoothmusclecellsand Varadkaretal.,2008).Anotherexplanationforthecongenitalheart pericytes,arerecruitedtomaturingbloodvesselsinaprocessthatis disease found in Hajdu-Cheney patients (Crifasi et al., 1997) is dependent on endothelial Jag1. In line with this, loss of Jag1 in the provided by the role of Notch2 in the formation of trabecular endotheliumordefectiveNotch3inmuralcellsleadstodefectivemural cellcoverageofarteriesandcapillaries;inhumansthisresultsin,for myocardium:underphysiologicalconditions,Notch2activitymust example,thevasculardementiasyndromeCADASIL. be suppressed by Numb and Numbl to balance the formation of compact versus trabecular myocardium, and its overabundance causeshypertrabeculation,non-compactationandseptationdefects been associated with Alagille syndrome (Devriendt et al., 1996). (Yang et al., 2012). Further studies are required to explain how However, this view was recently revised after a different Notch2 achieves these roles, when the developing myocardium is methodology showed imbalance in pancreatic function in only devoidofNotch2mRNAexpression(D’Amatoetal.,2016b). two out of 42 individuals with Alagille syndrome (Kamath et al., 2012).Nevertheless,itisknownthatNotch2andJag1playessential Notch2andJag1functionduringskeletaldevelopment rolesduringmurinepancreasdevelopment,potentiallyexplainingthe Notchsignalingalsoplaysanimportantroleindevelopingskeleton pancreasdefectsobservedinsomepatients.Notchsignalingcontrols and,inlinewiththis,skeletaldefectsareasharedfeatureofAlagille both the primary (occurring at E8.5-E12.0 of mouse gestation) and Hajdu-Cheney syndromes (reviewed by Zanotti and Canalis, (Ahnfelt-Rønne et al., 2012; Jensen et al., 2000) and secondary 2016), as well as other congenital Notch disorders (e.g. (occurringatE13.0-E16.0)(Murtaughetal.,2003;Shihetal.,2012) spondylocostal dysostosis; see below). The systemic deletion of wavesofpancreaticprogenitordifferentiationthatgiverisetofullset Jag1 or Notch2 did not reveal any somite-related phenotype that of endocrine (α-, β-, δ-, ε- and PP-cells), acinar and duct cells would suggest their involvement in the early events of bone (Li et al., 2016; for a review, see Afelik and Jensen, 2013). Jag1 formation(Hamadaetal.,1999;Xueetal.,1999).However,Jag1 regulates pancreas development through inhibition of Dll1-Notch andNotch2intheskeletogenicmesenchymenegativelyregulatethe signaling duringembryonicstagesandthroughactivationofNotch differentiation of mesenchymal progenitors into osteoblasts, both signalingduringpostnatalstages(Golsonetal.,2009a).Conditional in vitro and in adolescent mice, and their ablation leads to deletion of pancreatic epithelial Jag1 (using Pdx1-Cre) leads to progressive bone loss in adult mice (Hilton et al., 2008; Nobta defectiveductalformation,fibrosisandchronicpancreatitis(Golson etal.,2005;Youngstrometal.,2016).Importantly,Jag1deletionin etal.,2009b),whileconditionalcompounddeletionofNotch1and mesenchymal progenitors causes expansion of the cortical bone, Notch2leadstosurprisinglymildeffectsonpancreaticepithelialcell while diminishing trabecular bone mass, suggesting opposing proliferation (Nakhai et al., 2008), although it is possible that the effects of Jag1 signaling on cortical versus trabecular osteoblasts phenotypeisrescuedbyNotch3(Apelqvistetal.,1999). (Youngstrometal.,2016).Thisimbalanceleadstospinedefectsand the formation of butterfly vertebrae, a characteristic feature of Notch2andJag1functioninheartdevelopment Alagillesyndrome(Emericketal.,1999;Youngstrometal.,2016). Heart development requires concerted induction, proliferation, Furthermore, both clinical and genome-wide association studies differentiation, migration and complex morphogenesis events, indicate a positive correlation between mutations in JAG1 and T N includingtubeformationandlooping(forareview,seeSedmera, decreased bone mineral density and osteoporotic fractures (Bales E 2011). Jag1 and Notch2 are both expressed from early stages of etal.,2010;Kungetal.,2010).Theformationofcraniofacialbone, M theformationoftheheart,and–togetherwithothercomponentsof which arises from intramembranous ossification of neural crest P theNotchpathway(summarizedinBoxes2and3;forreviews,see (NC)-derived mesenchyme, also requires Jag1: its deletion in NC O D’Amato et al., 2016a; Luxán et al., 2016) – regulate several cells disrupts mesenchymal differentiation and leads to abrogated L E crucial steps of cardiac development. Although it is still unclear mineralizationanddeformitiesofthecraniofacialskeleton,another V howtolinkdiscreteJAG1mutations,whichhavevariableeffects feature shared by individuals with Alagille and Hajdu-Cheney E on JAG1 trafficking and activity, to the range of cardiac defects syndromes(Hilletal.,2014;Humphreysetal.,2012). D 1751 REVIEW Development(2017)144,1743-1763doi:10.1242/dev.148007 A Alagille syndrome – diagnostic criteria B Alagille syndrome – associated symptoms Posterior Characteristic embryotoxon facial features DelaGyerod wgrtohw th delay Butterfly PS vertebrae OA Heart defects VVasacsuclaur laanro amnaoliems aanlides bleeds in brain, carotid aartenrdy abnled eadorsta in body and brain VSD Intrahepatic bile duct paucity CV DyDspylsasptliac skitdicn eys kidneys PT PT PV HA BD Fig.5.HallmarksofAlagillesyndrome.(A)Alagillesyndromeisdiagnosedbasedonthepresenceoffivehallmarksofdisease:(1)characteristicfacialfeatures, includingaprominentforehead,pointedchinanddeep-seteyes;(2)aneyedefectknownasposteriorembryotoxon;(3)heartdefectsrangingfrompulmonary stenosistotetralogyofFallot;(4)vertebraldefects,suchasbutterflyvertebrae;and(5)jaundice/cholestasisduetointrahepaticbileductpaucity.(B)Inadditionto thediagnostichallmarks,50-90%ofpatientsaregrowthdelayed(Alagilleetal.,1975;Emericketal.,1999),40%ofpatientsexperiencerenalsymptoms(Kamath etal.,2013),and10-25%ofpatientshavevascularstructuralanomaliesandbleeds(Emericketal.,1999;Kamathetal.,2004).BD,bileduct;CV,centralvein;HA, hepaticartery;OA,overridingaorta;PS,pulmonarystenosis;PT,portaltriad;PV,portalvein;VSD,ventricularseptationdefect. Recently, gain of function Notch2 mice bearing a Q2319X etal.,2012).Morerecently,ithasbeenproposedthattheperivascular mutation were shown to exhibit enhanced osteoclastogenesis, coverage of newly formed vessels by vSMCs and pericytes is resulting in cancellous and cortical bone osteopenia and increased facilitated by Jag1-induced expression of integrin αvβ3, which bone resorption (Canalis et al., 2016). This phenotype is strikingly providesbindingtoabasementmembrane-specificvonWillebrand different from the phenotypes observed in odontoblast- and factor protein (Scheppke et al., 2012). In adulthood, Jag1 instead osteocyte-specificNotch1ICDgain-of-functionmice(Canalisetal., acts downstream of Dll4/Notch1 signaling to promote maturation 2013). This variation might be caused by differences between of vSMCs after injury through P27kip1-mediated repression of constitutiveandCre-dependentapproaches,differentlevelsofNotch proliferation(Boucheretal.,2013;Pedrosaetal.,2015). activation,orunknownfactorsextrinsictoskeletogenicmesenchyme Jag1alsoregulatessproutingduringangiogenesis;bothgain-and thatareresponsiblefortheHajdu-Cheneysyndromephenotype. loss-of-function experiments in endothelial cells show that Jag1 promotesthesproutingofnewtipcellsduringretinalangiogenesis RolesforNotch2andJag1inthevasculature (Highetal.,2008;forreview,seeBeneditoandHellström,2013). Components of the Notch pathway regulate several aspects of Interestingly,balancedsproutingisachievedbyDll4-induced‘high’ vasculardevelopment,fromvasculargrowthandendothelialtipand Notch signaling and suppression of sprouting, via inhibition of stalkcellselectiontovSMCdevelopment(seeBox1).Thesystemic VEGFR signaling in tip cells, which is antagonized in stalk knockout of Jag1 is embryonic lethal in mice at ∼E11.5 due to endothelial cells exhibiting Jag1-mediated ‘low’ Notch signaling defects in angiogenesis of the embryonic and yolk sac vasculature (Beneditoetal.,2009;Pedrosaetal.,2015).Althoughthesevarious (Kiernan et al., 2007; Xue et al., 1999). Likewise, homozygous aspects of Jag1 and Notch2 signaling have not yet been linked to Notch2 knockout mice die at ∼E10.5, displaying widespread Alagille or Hajdu-Cheney syndromes, they may contribute to the T N apoptosis (Hamada et al., 1999; McCright et al., 2006). The severity of these conditions, and the likelihood of vascular E endothelial-specific deletion (via Tie1- or Tie2-Cre) of Jag1 accidents, including ruptured aneurysms and bleeding (Kamath M phenocopies systemic Jag1 deletion, revealing that a lack of Jag1 etal.,2004). P signaling from the vascular endothelium likely causes the O differentiation defects, loss of vSMCs and severe disruption of DoprimarilyvasculardefectscauseAlagillepathologies? L E angiogenesisobservedinJag1mutants(Beneditoetal.,2009;High Several pathologies in Alagille and Hajdu-Cheney syndromes V etal.,2008).AsimilarlossofvSMCsisobservedinembryoswith appeartohavetheirrootsindefectivedevelopmentofvasculature. E D homozygous hypomorphic Notch2 (McCright et al., 2001; Wang As mentioned previously, Jag1 expressed in the portal vein 1752

Description:
ADAM secretase and the γ-secretase complex, resulting in release of the Notch intracellular 1996, with the linkage analysis-based discovery of mutations on .. 2001), Headturner (Kiernan et al., 2001), Ozzy (Vrijens et al., 2006).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.