ebook img

Anderson's Paving Conjecture PDF

131 Pages·2014·9.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anderson's Paving Conjecture

The Solution of the Kadison-Singer Problem Adam Marcus (Crisply, Yale) Daniel Spielman (Yale) Nikhil Srivastava (MSR India) Outline Disclaimer The Kadison-Singer Problem, defined. Restricted Invertibility, a simple proof. Break Kadison-Singer, outline of proof. The Kadison-Singer Problem (‘59) A  posi’ve  solu’on  is  equivalent  to:    Anderson’s  Paving  Conjectures  (‘79,  ‘81)    Bourgain-­‐Tzafriri  Conjecture  (‘91)    Feich’nger  Conjecture  (‘05)    Many  others     Implied  by:    Akemann  and  Anderson’s  Paving  Conjecture  (‘91)    Weaver’s  KS  Conjecture   2 The Kadison-Singer Problem (‘59) A  posi’ve  solu’on  is  equivalent  to:    Anderson’s  Paving  Conjectures  (‘79,  ‘81)    Bourgain-­‐Tzafriri  Conjecture  (‘91)    Feich’nger  Conjecture  (‘05)    Many  others     Implied  by:    Akemann  and  Anderson’s  Paving  Conjecture  (‘91)    Weaver’s  KS  Conjecture   2 The Kadison-Singer Problem (‘59) A  posi’ve  solu’on  is  equivalent  to:    Anderson’s  Paving  Conjectures  (‘79,  ‘81)    Bourgain-­‐Tzafriri  Conjecture  (‘91)    Feich’nger  Conjecture  (‘05)    Many  others     Implied  by:    Akemann  and  Anderson’s  Paving  Conjecture  (‘91)    Weaver’s  KS  Conjecture   2 The Kadison-Singer Problem (‘59)   2 (` ( )) L   et be a maximal Abelian subalgebra of N , A B 2 the algebra of bounded linear operators on ` ( )     N   Let ⇢ : C be a pure state. A ! Is the extension of ⇢ to ( ` 2 ( ) ) unique? N   B See  Nick  Harvey’s  Survey  or  Terry  Tao’s  Blog Anderson’s Paving Conjecture ‘79 For all ✏ > 0 there is a k so that for every A n-by-n symmetric matrix with zero diagonals, 1, ..., n S , ..., S there is a partition of into   1 k { } A(S , S ) ✏ A for j = 1, . . . , k j j k k  k k A = max Ax Recall   k k k k x =1 k k Anderson’s Paving Conjecture ‘79 For all ✏ > 0 there is a k so that for every A n-by-n symmetric matrix with zero diagonals, 1, ..., n S , ..., S there is a partition of into   1 k { } A(S , S ) ✏ A for j = 1, . . . , k j j k k  k k A = max Ax Recall   k k k k x =1 k k 0 1 @ A Anderson’s Paving Conjecture ‘79 For all ✏ > 0 there is a k so that for every ` self-adjoint bounded linear operator A on , 2 S , ..., S there is a partition of N into   1 k A(S , S ) ✏ A for j = 1, . . . , k j j k k  k k A = sup Ax k k k k x =1 k k Anderson’s Paving Conjecture ‘79 For all ✏ > 0 there is a k so that for every A n-by-n symmetric matrix with zero diagonals, 1, ..., n S , ..., S there is a partition of into   1 k { } A(S , S ) ✏ A for j = 1, . . . , k j j k k  k k Is equivalent if restrict to projection matrices. [Casazza, Edidin, Kalra, Paulsen ‘07]

Description:
The Kadison-Singer Problem ('59). A posiUve soluUon is equivalent to: Anderson's Paving Conjectures ('79, '81). Bourgain-‐Tzafriri Conjecture ('91).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.