ebook img

Anderson localization versus charge-density-wave formation in disordered electron systems PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Anderson localization versus charge-density-wave formation in disordered electron systems

Anderson localizationversus charge-density-wave formationindisordered electron systems S. Nishimoto,1 S. Ejima,2 and H. Fehske2 1Institutefor Theoretical Solid State Physics, IFW Dresden, 01171 Dresden, Germany 2Instituteof Physics, ErnstMoritz Arndt UniversityGreifswald, 17489 Greifswald, Germany (Dated:October31,2012) Westudytheinterplayofdisorderandinteractioneffectsincludingbosonicdegreesoffreedomintheframe- workof agenericone-dimensional transport model, theAnderson-Edwards model. Usingthedensity-matrix renormalizationgrouptechnique, weextractthelocalizationlengthandtherenormalizationoftheTomonaga Luttinger liquid parameter from the charge-structure factor by a elaborate sample-average finite-size scaling 2 procedure. ThepropertiesoftheAndersonlocalizedstatecanbedescribedintermsofscalingrelationsofthe 1 metallicphasewithoutdisorder. Weanalyzehowdisordercompeteswiththecharge-density-wavecorrelations 0 triggeredbythebosonsandgiveevidencethatstrongdisorderwilldestroythecharge-orderedstate. 2 t PACSnumbers:71.23.An,71.27.+a,71.30.+h,71.45.Lr c O Disorder is an inherent part of any solid state system [1]. ial way [15]. This has beendemonstratedfor the Anderson- 0 3 Low-dimensionalmaterialsareexceedinglysusceptibletodis- Holsteinmodelwithinthestatisticaldynamicalmeanfieldand order. In one dimension (1D), theory predicts that all carri- momentumaverageapproximations[16,17]. Atfinitecarrier ] ers are strongly localized for arbitrary energies and arbitrar- density,theMott-AndersontransitionforCoulombcorrelated l e ilyweakdisorder. ThisholdsforAnderson’snon-interacting electrons was investigated by self-consistent mean-field the- - r tight-bindingHamiltonianwith a diagonal(i.e., on-site) ran- oryinD = ∞andD = 3[18–20], aswellasbyvariational st dom potential [2, 3]. The coherent backscattering from the Gutzwiller ansatz based approaches [21]. Electron-electron . randomlydistributedimpuritiestherebytransformsthemetal interactionsmayscreenthedisorderpotentialinstronglycor- t a intoaninsulator. relatedsystems,stabilizingtherebymetallicity[22].Exactre- m In1D themutualinteractionof theparticlesislikewise of sults are rare however. In 2D, Lanczos and quantum Monte - significance; here even weak interactions can cause strong Carlo data suggest a disorder-induced stabilization of the d n correlations. The instantaneousCoulomb repulsion between pseudogap,alsoawayfromhalf-filling[23]. Thedensityma- o theelectrons,forinstance,tendstoimmobilizethechargecar- trixrenormalizationgroup(DMRG)[24]allowsthenumerical c riers as well. As a consequence, at half-filling, a Mott insu- exactcalculationofground-statepropertiesofdisordered,in- [ lating(spin-density-wave)phaseisenergeticallyfavoredover teractingfermionsystemsin1D,onfairlylargesystems. Ex- 1 themetallicstate[4]. Theretardedelectron-phononcoupling, ploitingthistechnique,thepropertiesofdisorderedLuttinger v ontheotherhand,mayleadtostructuraldistortionsaccompa- liquids have been analyzed in the framework of the spinless 2 niedbypolaronformation[5],andisthedrivingforcebehind fermion Anderson-t-V model (AtVM) [25] and the spinful 4 1 the metal-to-Peierlstransition, establishinga charge-density- Anderson-Hubbardmodel[26]. 8 wave(CDW)order[6]. Inthispaper,weaddresshowmany-bodyAndersonlocal- 0. Tounderstandhowdisorderandinteractionacttogetheris ization competes with CDW formation triggered by bosonic 1 ofvitalimportancenotonlydiscussingthemetal-insulatorit- degrees of freedom in the framework of the Anderson- 2 selfbutalsoanalyzingtheelectronicpropertiesofmanyquasi- Edwardsmodel(AEM). The Edwardsmodel[27] represents 1 1D materials of current interest, such as conjugated poly- a very general two-channel fermion-bosonHamiltonian, de- : v mers, organic charge transfer salts, ferroelectric perovskites, scribing quantum transport in a background medium. Its Xi halogen-bridged transition metal complexes, TMT[SF,TF] fermion-bosoninteractionpart chains, Qn(TCNQ) compounds, or, e.g., the quite recently r 2 a studiedvanadiumdioxidePeierls-Mottinsulator[7–10]. Car- bonnanotubes[11]andorganicsemiconductors[12]areother H =−t f†f (b†+b ) (1) fb b j i i j exampleswheredisorderandbosonicdegreesoffreedomare hXi,ji ofimportance.Regardinginteractingbosons,ultracoldatoms trappedin opticallattices offerthe uniquepossibility totune boththedisorderandinteractionstrength[13]. mimics the correlations/fluctuations inherent to a spinful fermionmany-particlesystembyaboson-affectedtransferof Unfortunatelythe subtle interplay of disorder and interac- tion effectsis one of the most challengingproblemsin solid spinless charge carriers. In Eq. (1), a fermion fi(†) creates statetheoryand—despitefiftyyearsofintenseresearch—still (orabsorbs)alocalbosonb(†) everytimeithopstoanearest i an area of uncertainty, see [14] and references therein. In neighbor(NN)sitej. Therebyitcreatesalocalexcitationin the limit of vanishing charge carrier density only the inter- thebackgroundwith energyω : H = ω b†b . Because 0 b 0 i i i actionwiththelatticevibrationsmatters. ThenAndersondis- ofquantumfluctuationsthebackgrounddisPtortionsshouldbe ordermayaffectthepolaronself-trappinginahighlynontriv- abletorelaxwithacertainrateλ. TheentireEdwardsHamil- 2 easily generalized to treat systems including bosons [32], in 1 ordertoobtainunbiasedresultsforthefullAEM, ∆=0 ∆>0 0.8 repulsiveTLL Andersoninsulator H =∆ ε nf +H , (3) AE i i E -100.6 ? Xi ω 0.4 and the related AtVM, HAtV = ∆ iεinfi +HtV, where disorderofstrength∆isinducedbyinPdependentlydistributed 0.2 CDW randomon-sitepotentialsε ,drawnfromtheboxdistribution i P(ε ) = θ(1/2 − |ε |). Within the pseudosite approach, a 0 i i 0 10 20 30 boson is mapped to n pseudosites [32, 33]. In the numer- b λ-1 ical study of the AEM we take into account up to n = 4 b pseudosites and determine n by the requirement that local FIG. 1. (Color online) DMRG metal-insulator phase boundary for b bosondensityofthelastpseudositeislessthan10−7foralli. the1Dhalf-filledEdwardsmodelwithoutdisorder(solidline).CDW orderissuppressedifthebackgroundfluctuationsdominate[ω <1] Furthermorewe keepuptom = 1200density-matrixeigen- 0 orifthesystem’sabilityforrelaxationishigh[λ > λc(ω0)]. The statesintherenormalizationstepstoensurethatthediscarded blue crosses denote theparameter setsconsidered in thispaper for weightissmallerthan10−8. Thecalculationsareperformed thedisorderedEdwardsmodel. forfinitesystemswithlengthsL=16to128andopenbound- ary conditions (OBC). For the simpler effective AtVM we reachL=192withOBC.Heretheuseofm=1000density- tonianthenreads matrixeigenstatesmakesthediscardedweightnegligible. To H =H −λ (b†+b )+H . (2) gainrepresentativeresultsforourdisorderedsystemswepro- E fb i i b Xi ceed as follows. We first compute the physical quantity of interestatfixedLfornumeroussamples{ε },thensetupan i Aunitarytransformationb 7→b +λ/ω eliminatestheboson i i 0 appropriate statistical average, and finally perform a careful relaxationterminfavorofasecondfermionhoppingchannel: finite-sizescaling. H = H − t f†f + H . We like to emphasize E fb f hi,ji j i b Animportantquestionis, ofcourse, whichphysicalquan- that (i) this free-fePrmion transfer takes place on a strongly tity to use in the finite-size scaling of the Anderson transi- reduced energy scale t = 2λt /ω however, and (ii) co- f b 0 tion. For this purpose the localization length ξ seems to be herentpropagationof a fermionis possible even in the limit promising, because it is sensitive to the nature, localized or λ=t =0bymeansofasix-stepvacuum-restoringhopping f extended, of the electron’s eigenstate [34, 35]. So far ξ has process[28],actingasadirectnextNNtransfer“fi†+2fi”.The beendeterminedfromthephasesensitivityoftheground-state Edwardsmodelrevealsa surprisinglyrich physics. Depend- energy[17, 25]. Quite recently, Berkovits demonstratesthat ingontherelativestrengthstf/tb ofthetwotransportmech- alsotheentanglemententropycanbeusedtoextractthelocal- anisms and the rate of bosonic fluctuations tb/ω0 it repro- izationlength[36]. However,inbothmethodsthesystemsize duces Holstein and t-J model-like lattice- and spin-polaron Lshouldbealwayslargerthanξ. transport, respectively, in the single-particle sector [28, 29]. Advantageously,thelocalizationlengthcanbeextractedby Forthehalf-filledbandcase,ametal-insulatorquantum-phase a finite-size scaling analysis of the charge density structure transition from a repulsive Tomonaga luttinger liquid (TLL) factor even for L ≪ ξ, which works equally well for inter- to a CDW has been reported [30, 31], see Fig. 1. Note that actingsystems[26],andthereforeallowsustodiscussthein- the CDW is a few-boson state that typifies rather a corre- terplay between Anderson localization and CDW formation lated (Mott-Hubbard-type)insulatorthan a Peierls state with in a consistent manner. The charge structure is defined as manybosons(phonons)involved[30, 31]. Since inthelimit C˜(q) = 1 L [hnfnf i−hnfihnf i]eiqr,. Assuming L i,r=1 i i+r i i+r ω0 ≫ 1 ≫ λ (here, and in what follows tb is taken as an exponenPtial decay of the equal-time density-density cor- the unitof energy)backgroundfluctuationsare energetically relationsintheAndersoninsulatingphase[37], the structure costly, charge transport is hindered and an effective Hamil- factorscaleswith tonian with NN fermion repulsion results. To leading or- 2 −detrf, inhai,rjeidfuj†cfeid+(zVero-bionsfionn)fi+H1ilwbeitrht sVpa=ce,t2bw/eωg0.etTHhitsVso=- C˜(q)=−2Kπρ∗2e−eπ6π6ξ2ξL−−11q2, (4) callePd t-V model canPbe mapped onto the exactly solvable XXZ model, which exhibits a TLL-CDW quantum phase where q = 2π/L ≪ 1 [26]. Equation (4) contains two un- transition at V/t = 2, i.e., at λ−1 = 4. This value is knownparameters:thelocalizationlengthξandthedisorder- f c smallerthanthoseobtainedfortheEdwardsmodelinthelimit modifiedTLLinteractioncoefficientK∗. Hence,ifthecharge ρ ω−1 ≪ 1, where λ−1 ≃ 6.3 (see Fig. 1 and Ref. [31]), be- structure factor is determined numerically, ξ and K∗ can be 0 c ρ causealreadythree-siteandeffectivenext-NNhoppingterms easilyderivedbyfittingthenumericaldatawithEq.(4). For wereneglectedinthederivationofthetV-model. vanishingdisorder∆→0,ξdivergesandK∗becomestheor- ρ We now employthe DMRG technique[24], which can be dinaryTLLparameterK . Weareawarethatadisordered1D ρ 3 0.02 105 1 AEM AtVM AEM ω0=1 ∆∆==00..05 0.01 ∆∆//ttff==00..05 104 0.8 ω0=2 ∆=1.0 ∆/tf=1.0 0.6 q) ∆=2.0 ∆/tf=2.0 ξ103 K*ρ 1 (0.01 v 0.4 ˜Ca 2 0.8 ω0=3 10 0.2 0.6 101 (a) λ=0.1 0 1∆/tf2 3 (b) 0 105 1 0 0 λ=1 0 0.01 0.02 0 0.005 0.01 0.015 AEM 1/(L-δ) 1/(L-δ) 0.9 4 10 λ=0.2 FIG.2.(Coloronline)ChargestructurefactoroftheAEMwithλ= 0.8 0.1andω0 = 2(leftpanel)andtheAtVMwithV/tf = 1.5(right ξ103 K*ρ 1 λ=0.1 panel)sampledover300and500disorderrealizations,respectively. 0.7 0.9 Dashedlinesgivethefinite-sizescalingofC˜av(q)accordingto(4). 2 0.8 10 0.6 0.7 (c) ω0=2.5 0 1∆/t2 3 (d) systemisnolongeraTLLandconsequentlytheTLLparam- 101 0.5 f 0.1 1 2 0 1 2 eter is ill-defined in the strict sense. Nevertheless, if the lo- ∆ ∆ calizationlengthsignificantlyexceedsthelatticeconstant,the 1 AtVM short-range correlation functions should still show a power- 4 10 lawdecay. Thereforewe mightgainsomevaluableinforma- tionaboutthelocalmotionoffermionsfromK∗. 0.8 ρ Figure2demonstratesthatthefinite-sizescalingoftheav- ξ K*ρ 3 eragedchargestructurefactorC˜ (q)bymeansof(4)works 10 av 0.6 tothebestandequallywellforthe1DAEMandAtVM(this (f) appliestoallparametervaluesdiscussedbelow). Toaccomo- 2 (e) 10 datethemissingcorrelationsowingtotheOBC,wehaveplot- 0.4 tedC˜ (q)asafunctionof1/(L−δ)insteadof1/L(thisway 0.1 1 2 0 1 2 av ∆/t ∆/t ofplottingthedataisnonessentialbutgivesaquantitativere- f f finementofthefit). Theparameterδ isadjustedtoreproduce FIG.3. (Coloronline)Leftpanels: Log-logplotofthelocalization K∗ = K and ξ = ∞ at ∆ = 0. We note the generalten- ρ ρ length versus disorder strength for the AEM at fixed λ = 0.1 (a), dency that the charge correlations arising at finite L will be fixedω = 2.5(c),andfortheAtVM(e). Dashedlinesarefitsto 0 suppressedthemorethelarger∆. Eq. (5) with: (a) ξ = 620, 98, 50 and γ = 1.75, 1.65, 1.22 for 0 Ina nextstep, we extractthelocalizationlengthξ andthe λ = 1, 0.2,0.1; (c)ξ0 = 500, 65, 40andγ = 1.81, 1.35,1.1for modifiedTLLparameterforthedisorderedEdwardsandt-V ω0 = 1,2,3;(e)ξ0 = 440,350,230,190,150andγ = 1.95,1.5, models. Figure3 showsthe dependenceof ξ andK∗ on the 1.3, 1.1, 0.95 for V/tf = 0, 0.5, 1. 1.5, 2 (from top to bottom), ρ respectively. Right panels: Corresponding results for the modified disorderstrength∆. Firstofall,wefindapowerlawdecayof TLLparameterK∗intheAEM[(b),(d)],andAtVM(f). ξwith1/∆inthewhole(λ,ω ;V)parameterregime: ρ 0 ξ/ξ =∆−γ (5) 0 Theright-handpanelsdisplaystrikingdifferencesinthe∆- [notethat∆isgiveninunitsoft (t )inFig.3fortheAEM dependenceofK∗forthemodelsunderconsideration.These b f ρ (AtVM)].Theestimatedvaluesofthe(bare)decaylengthξ can be attributed to the fact, that the Edwards model con- 0 andtheexponentγ aregiveninthecaptionofFig.3forchar- tainstwoenergyscalesλandω whilethephysicsofthet-V 0 acteristic model parameters. As expected, the localization model is merely governed by the ratio V/t = t /2λ, i.e,. f b length decreases with increasing disorder strength. Stronger ω dropsout. Far away from the CDW instability, however, 0 electroniccorrelations,i.e,smallerλorlargerω0(largerV)in bothmodelsdescribeaweaklycorrelatedTLLwithKρ <∼ 1 theAEM(AtVM),alsotendtoreduceξ. Inanycase,ξ turns andK∗slowlydecaysasthedisorder∆increases(seethered ρ outtobefiniteassoonas∆>0,indicatingthattherepulsive opentrianglesinFig.3;tomakethecomparisonwiththet-V TLL,ifrealizedfor∆=0,makeswayforanAndersoninsu- model data easy, we have shown K∗ versus ∆/t in the in- ρ f lator.Therebythelocalizationlengthbecomescomparablethe sets). IfwemovetowardstheCDWinstabilitybydecreasing latticespacingat∆=2intheAEMwithλ=0.1,ω =2.5, λat fixedω > ω or increaseω atλ < λ (cf. Fig. 1) a 0 0 0,c 0 c whileitisstillabout102fortheAtVMwithV/t =2. non-monotonousbehavior develops. At small ∆, K∗ is sig- f ρ 4 103 2 renormalizationequation: d(∆2)/dl = (3−2Kρ)∆2 (with AtVM ξ0 1.8 scalequantityl). Thiscausesthescalingrelation[37,39,40] 1020 1 2 1.6 γ =2/(3−2K ). (6) 104 V/tf γ1.4 ρ γ/tf AEM 1.2 TherightpanelofFig.4displaysthatγ basicallydependson ξ0103 1 Kρ as predicted by Eq. (6). This means that the long-range localization propertiesof the AEM can be understoodin the 0 1 2 0.5 0.6 0.7 0.8 0.9 1 Veff/tf Kρ frameworkofAtVMwithaneffectiveintersiteinteractionin- ducedbythebosonicdegreesoffreedom.Sincethe(effective) FIG.4. (Coloronline)Leftpanels: Decaylengthξ0asafunctionof CoulombrepulsiontendsinresulttoalesserKρ,γ decreases the(effective)CoulombrepulsionV(eff) fortheAtVMandAEM. with increasing V(eff) (cf. Fig. 4). In this way Anderson Rightpanel:Correspondingγ-exponentvs.Kρ,incomparisontothe localizationissuppressedbythe2k -CDWfluctuationstrig- scalingrelation(6)(dashedline).Forfurtherexplanationseetext. F gered by V, which on their part also lead to charge carrier immobilization however. While γ = 2 in the free-fermion limit(V, 1/λ → 0), it scalesto unityapproachingthe CDW nificantlyenhancedasthedisorderincreases.Obviouslyweak transitionpoint, located, e.g., atλ ≃ 0.07forω = 2.5 re- disorderdestabilizesthe2k -CDWcorrelationslocally,since c 0 F spectivelyatω ≃3.1forλ=0.1. disorder-induced second- (and higher-) order boson-assisted 0,c The question how disorder affects the insulating CDW (inelastic) hopping processes are possible in the AEM, even state could not be addressed by the above TLL-based scal- forω ≫ 1. ThisinsharpcontrasttotheAtVM,whereonly 0 ing approach. Here, increasingthe strength∆ of disorder, a elasticscatteringtakesplaceandtheintersiteCoulombrepul- crossoverisexpectedfromtheCDW-regimedominatedbythe sionishardlyaffectedby∆. Asaresult,inthedisorderedt-V scaleofthesingle-particle(charge)gap∆ (∆ = 0)[31] to modeltheCDWcorrelationswillbestrongerandmorerobust. c1 Hence, for the AtVM, K∗ appearsto be nearly independent theAnderson-regime,where∆≫∆c1.Intheformercasethe ρ from∆ for0.5 <∼ V/tf <∼ 2. Thisalso notablydiffersfrom CDWsurvivesmoderatedisorder(asexperimentallyobserved fordisorderedPeierls-Mottinsulators[10]),inthelattercase the behavior found for the disordered Hubbard model [26], a pseudogapscale maydevelopasinthe stronglydisordered where the umklapp scattering is effectively enhanced by the Hubbardmodel[23]. Figure5, showingthespatialvariation formationofMottplateausappearingduetodisorder[38]. If ∆exceedsacertainvalueintheAEM,K∗ startstodecrease of the local fermion/boson densities for a specific but typi- ρ caldisorderrealization(notethatanyrealexperimentisper- and finally the whole scaling procedure breaks down when ξ >∼1(seethepointat∆=2intheupperrightpanelwithKρ∗ finosrimdeedthoenCaDpWartpichualsaer(sλam−1pl=e),1i0ll0u,stωra−te1s=the0.s4i;tucaft.ioFnigd.e1e)p. wellbelow0.5). Inthisregimethewavefunctionsofthepar- 0 One realizes thatlong-rangechargeorderceases to exist but ticlesarestronglylocalizedandtheTLL-behaviorisasmuch short-range CDW correlations may locally persist whenever suppressedastheCDWcorrelations. Letuspointoutthatthe enhancementofK∗ triggeredbythebosonicdegreesoffree- neighboringonsite potentials will differ not much (see, e.g., ρ theregioni=45...55inthelowerpanelofFig.5). dommightserveasaexplanationfortheobservedincreasing chargevelocitynearanegativelychargeddefectinthesingle- To summarize, using an unbiased numerical DMRG ap- wall carbon nanotubes [11], since the TLL parameter K is proach,forthefirsttimeweinvestigatedtheinterplayofdisor- ρ proportionaltothechargevelocity. derandinteractioneffectsincludingbosonicdegreesoffree- We now focus on the localization behavior at large dis- domintheframeworkofthe1DspinlessfermionAnderson- tances [O(ξ ≫ 1)], and therefore made an attempt to an- Edwards model. Although the TLL phase disappears owing alyze the decay length ξ and the exponent γ, for both the tothedisorder,thelocalizationpropertiesoftheAndersonin- 0 AEM and AtVM, in terms of the interaction exponent K sulator state can be understood in terms of scaling relations ρ andthechargesusceptibilityχ ofstandardTLLtheory[37]. containing the charge susceptibility and the Luttinger liquid c Weexpectthatξ isstronglyinfluencedbythestrengthofthe parameterofthemetallicphasewithoutdisorderonly,asinthe 0 chargefluctuationsquantifiedbyχ , whichisgiven—forthe caseofthespinlessfermionAnderson-t-V model. However, c the Anderson-Edwardsmodel reveals a more complex inter- t-V model—asχ = 2Kρ = 4 π −1 withchargeveloccityvπ.vcFigurπeq41s−h(o2Vwtfs)2th(cid:20)aatrcξcosn(−ic2eVtlfy)scale(cid:21)s rdeiltaiotinoanlsbceatwtteereinngdicshoarndneerlasn,dinvCoDlvWingcobroresloantiiocnesxbcietcaatiuosneaandd- c 0 withV/t , i.e., ξ ∝ χ infact(seeupperpanel). Thesame annihilationprocesses, appear. Thisoffersapromisingroute f 0 c holds—perhaps surprisingly—for the AEM when ξ /tγ is for adapting the description of low-dimensional transport in 0 f plotted versusan effectiveintersite repulsionestimated from many disordered materials. Disorder also affects the CDW V /t = −2cos(π/2K )(seelowerpanel). Moreover,for state inthattruelong-rangeordervanishesforstrongon-site eff f ρ thedisorderedt-V model,theexponentγ isconnectedtoK potentialfluctuationsthoughlocalCDWcorrelationssurvive. ρ ofthe(spinlessfermion)TLLsystemwithoutdisorderviathe ThisworkwassupportedbyDFGthroughSFB652. 5 i 1 ∆=0 L=128 [12] S.CiuchiandS.Fratini,Phys.Rev.Lett.106,166403(2011). bni [13] Z.Ristivojevic,A.Petkovic´, P.L.Doussal, andT.Giamarchi, h Phys.Rev.Lett.109,026402(2012). , i0.5 [14] E. Abrahams, ed., 50 Years of Anderson Localization (World fni Scientific,Singapore,2010). h 0 [15] P.W.Anderson,Nature235,163(1972). [16] F.X.BronoldandH.Fehske,Phys.Rev.B66,073102(2002). 1 ∆=2 [17] H. Ebrahimnejad and M. Berciu, Phys. Rev. B 85, 165117 i 1 (2012). bni [18] M.A.TuschandD.E.Logan,Phys.Rev.B48,14843(1993). , ih0.5 0εi [19] V. Dobrosavljevic´ and G. Kotliar, Phys. Rev. Lett. 78, 3943 fni (1997). h -1 [20] K.Byczuk,W.Hofstetter,andD.Vollhardt,Phys.Rev.Lett.94, 0 056404(2005). 40 60 80 [21] A.Farhoodfar,R.J.Gooding,andW.A.Atkinson,Phys.Rev. i B84,205125(2011). [22] D.Tanaskovic´,V.Dobrosavljevic´,E.Abrahams,andG.Kotliar, FIG.5. (Coloronline)Localdensitiesoffermionshf†f i(bluecir- i i Phys.Rev.Lett.91,066603(2003). cles)andbosons hb†ibii(redopensquares) inthecentralpartofan [23] S.Chiesa,P.B.Chakraborty,W.E.Pickett,andR.T.Scalettar, openAEMchainwithout(∆ = 0)andwithdisorder(∆ = 2). Re- Phys.Rev.Lett.101,086401(2008). sultsaregivenforasinglerealization{εi}(blacktriangles). Model [24] S.R.White,Phys.Rev.Lett.69,2863(1992). parametersareλ=0.01,ω0 =2.5,andL=128(OBC). [25] P. Schmitteckert, T. Schulze, C. Schuster, P. Schwab, and U.Eckern,Phys.Rev.Lett.80,560(1998). [26] S. Nishimoto and T. Shirakawa, Phys. Rev. B 81, 113105 (2010). [27] D.M.Edwards,PhysicaB378-380,133(2006). [28] A.Alvermann,D.M.Edwards,andH.Fehske,Phys.Rev.Lett. [1] V. F.Gantmakker, ElectronsAndDisorder in Solids, vol.130 98,056602(2007). ofInternational SeriesofMonographs onPhysics(Clarendon [29] M.BerciuandH.Fehske,Phys.Rev.B82,085116(2010). Press,2005). [30] G. Wellein, H. Fehske, A. Alvermann, and D. M. Edwards, [2] P.W.Anderson,Phys.Rev.109,1492(1958). Phys.Rev.Lett.101,136402(2008). [3] J. Fro¨hlich, F. Martinelli, E. Scoppola, and T. Spencer, Com- [31] S. Ejima, G. Hager, and H. Fehske, Phys. Rev. Lett. 102, mun.Math.Phys.101,21(1985). 106404(2009). [4] N.F.Mott,Metal-InsulatorTransitions(Taylor&Francis,Lon- [32] E.JeckelmannandS.R.White,Phys.Rev.B57,6376(1998). don,1990). [33] E.JeckelmannandH.Fehske, RivistadelNuovoCimento30, [5] L.D.Landau,Phys.Z.Sowjetunion3,664(1933). 259(2007). [6] R.Peierls,Quantumtheoryofsolids(OxfordUniversityPress, [34] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Oxford,1955). Ramakrishnan,Phys.Rev.Lett.42,673(1979). [7] N.Tsuda,K.Nasu,A.Yanase,andK.Siratori,ElectronicCon- [35] B. Kramer and A. Mac Kinnon, Rep. Prog. Phys. 56, 1469 ductioninOxides(Springer-Verlag,Berlin,1991). (1993). [8] A.R.BishopandB.I.Swanson,LosAlamosSciences21,133 [36] R.Berkovits,Phys.Rev.Lett.108,176803(2012). (1993). [37] T.GiamarchiandH.J.Schulz,Phys.Rev.B37,325(1988). [9] D.Je´romeandH.J.Schulz,Adv.Phys.31,299(1982). [38] M.Okumura,S.Yamada,N.Taniguchi,andM.Machide,Phys. [10] C. Weber, D. D. O’Regan, N. D. M. Hine, M. C. Payne, Rev.Lett.101,016407(2008). G.Kotliar,andP.B.Littlewood,Phys.Rev.Lett.108,256402 [39] F.WoynarovichandH.P.Eckle,J.Phys.A20,L97(1987). (2012). [40] C.J.Hamer,C.R.W.Quispel,andM.T.Batchelor,J.Phys.A [11] I. O. Maciel, N. Anderson, M. A. Pimenta, A. Hartschuh, 20,5677(1987). H.Qian,M.Terrones,H.Terrones,J.Campos-Delgado,A.M. Rao,L.Novotny,etal.,NatureMaterials7,878(2008).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.