ebook img

and Keith Nehrke Erik Allman, Korrie Waters, Sarah Ackroyd elegans Rhythmic Behavior in ... PDF

12 Pages·2013·2.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview and Keith Nehrke Erik Allman, Korrie Waters, Sarah Ackroyd elegans Rhythmic Behavior in ...

Signal Transduction: Analysis of Ca2+ Signaling Motifs That Regulate Proton Signaling through the Na+/H+ Exchanger NHX-7 during a Rhythmic Behavior in Caenorhabditis elegans Erik Allman, Korrie Waters, Sarah Ackroyd and Keith Nehrke J. Biol. Chem. 2013, 288:5886-5895. doi: 10.1074/jbc.M112.434852 originally published online January 14, 2013 Access the most updated version of this article at doi: 10.1074/jbc.M112.434852 Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites. Alerts: • When this article is cited • When a correction for this article is posted Click here to choose from all of JBC's e-mail alerts Supplemental material: http://www.jbc.org/content/suppl/2013/01/14/M112.434852.DC1.html This article cites 70 references, 38 of which can be accessed free at http://www.jbc.org/content/288/8/5886.full.html#ref-list-1 Downloaded from http://www.jbc.org/ at University of Rochester on June 17, 2013 THEJOURNALOFBIOLOGICALCHEMISTRYVOL.288,NO.8,pp.5886–5895,February22,2013 ©2013byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PublishedintheU.S.A. Analysis of Ca2(cid:1) Signaling Motifs That Regulate Proton (cid:1) (cid:1) Signaling through the Na /H Exchanger NHX-7 during a Rhythmic Behavior in Caenorhabditis elegans*□S Receivedforpublication,November8,2012,andinrevisedform,December20,2012Published,JBCPapersinPress,January14,2013,DOI10.1074/jbc.M112.434852 ErikAllman‡,KorrieWaters§,SarahAckroyd¶,andKeithNehrke‡¶1 FromtheDepartmentsof‡PharmacologyandPhysiologyand¶Medicine,UniversityofRochesterSchoolofMedicineandDentistry, Rochester,NewYork14642andthe§DepartmentofFamilyMedicine,OhioUniversity,Athens,Ohio45701 Background:Ca2(cid:1)oscillationsstimulaterhythmicprotonsignalingbyNa(cid:1)/H(cid:1)exchangerNHX-7inC.elegans. Results:ThecontributionofindividualregulatorymotifstoNHX-7activitywasdefinedbyinvivostructure-functionanalysis. Conclusion:NHX-7activityisregulatedbybothCa2(cid:1)andpH,leadingtorobustbuttransientsignaling. Significance:UnderstandingthemechanismsthatdistinguishprotonsignalingfrompHregulationiscriticalfordual-function membranetransporters. MembraneprotontransporterscontributetopHhomeostasis pHhomeostasisisvitalformaintainingproteinfolding/func- buthavealsobeenshowntotransmitinformationbetweencells tion and cell volume and for facilitating the flow of ions and in close proximity through regulated proton secretion. For nutrientsthroughvariousphysiologicallycoupledmechanisms example, the nematode intestinal Na(cid:1)/H(cid:1) exchanger NHX-7 (forreview,seeRef.1).pHimbalancehasbeenimplicatedina causesadjacentmusclecellstocontractbytransientlyacidifying number of human diseases, including renal tubular acidosis, the extracellular space between the intestine and muscle. osteoporosis,andmentalretardation,aswellasinthetransfor- NHX-7 operates during a Ca2(cid:1)-dependent rhythmic behavior mationandmetastasisofcancer(2–4).BecausepHregulation and contains several conserved motifs for regulation by Ca2(cid:1) plays a ubiquitous role in cell physiology and is crucial to an input,includingmotifsforcalmodulinandphosphatidylinositol organism’s health, it is not surprising that a wide variety of 4,5-bisphosphate binding, protein kinase C- and calmodulin- acid-basetransportersexist(1). dependentproteinkinasetypeIIphosphorylation,andabind- However, recent evidence suggests that protons them- ingsiteforcalcineurinhomologousprotein.Here,wetestedthe selvesmayhaveanadditionalroleinsignalingbetweencells. idea that Ca2(cid:1) input differentiates proton signaling from pH Several types of mammalian proton receptors have been housekeepingactivity.Eachofthesemotifswasmutated,andtheir identified,includingaclassofG-protein-coupledreceptors contribution to NHX-7 function was assessed. These functions (GPR4,OGR1,G2A,andTDAG8),adhesionthekinasePyk2, includedpHrecoveryfromacidificationincellsincultureexpress- and cation channels of the Na(cid:1) channel/degenerin super- ingrecombinantNHX-7,extracellularacidificationmeasureddur- family(ASIC1/DRASIC)(5–9).Thesereceptorsarefoundin ing behavior in live moving worms, and muscle contraction thekidney,brain,andcentralnervoussystemandhavelong strengthasaresultofthisacidification.Ourdatasuggestthatmul- tiplelevelsofCa2(cid:1)inputregulateNHX-7,whosetransportcapac- been implicated in the perception of pain associated with tissueacidosis(10,11).ReductionsinextracellularpHarise itynormallyexceedstheminimumnecessarytocausemusclecon- duringthecourseofischemia,epilepticseizures,andelectri- traction. Furthermore, extracellular acidification limits NHX-7 cal stimulation in the brain, suggesting a potential role for proton transport through feedback inhibition, likely to prevent theseprotonreceptorsinhumandisease(12–16).Therefore, metabolic acidosis from occurring. Our findings are consistent withanintegratednetworkwherebybothCa2(cid:1)andpHcontribute local regulation of proton availability may have important toprotonsignaling.Finally,ourresultsobtainedbyexpressingrat physiologic and pathophysiologic consequences through NHE1inCaenorhabditiseleganssuggestthataconservedmecha- signal transmission processes. Membrane transporters that nismofregulationmaycontributetocell-cellcommunicationor regulate pH homeostasis may also have a role in directing protonsignalingbyNa(cid:1)/H(cid:1)exchangersinmammals. localized transient proton signals as part of an inter- cellularcommunicationcascade.Ifso,itwillbeimportantto determine what particular features of such proteins distin- guishtheirbasalactivity(whichcontributestomaintaining *ThisworkwassupportedbyRuthL.KirschsteinNationalResearchService InstitutionalAwardGM068411fromtheNationalInstitutesofHealth(to pH) from their stimulated acute activity during cell E.A.).ThisworkwasalsosupportedbyNationalScienceFoundationGrant signaling. IOS0919848(toK.N.). □S Thisarticlecontainssupplemental“ExperimentalProcedures,”Fig.S1,and Caenorhabditiselegansisageneticmodelorganisminwhich additionalreferences. protonshavebeenrecentlyshowntobeactivelysecretedasan 1Towhomcorrespondenceshouldbeaddressed:Dept.ofMedicine,Uni- intercellular signaling molecule during a rhythmic behavior versityofRochesterMedicalCenter,601ElmwoodAve.,Rochester,NY. (17,18).Defecationisanultradianbehaviorthatoccurswitha Tel.: 585-275-7020; Fax: 585-442-9201; E-mail: keith_nehrke@urmc. rochester.edu. frequencyof(cid:2)45sinwellfedworms(19,20).Thedefecation 5886 JOURNALOFBIOLOGICALCDHoEwMnIlSoTaRdYed from http://www.jbc.org/ at University of Rochester on JuVnOe L1U7M, 2E012388•NUMBER8•FEBRUARY22,2013 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans motorprogram(DMP)2ischaracterizedbythreeconsecutive of second messenger Ca2(cid:1) signaling. NHE1 and NHE3 both setsofmusclecontractions(21).Thefirstsetisacontractionof respondtochangesinCa2(cid:1)throughanumberofmechanisms, theposteriorbodywallmuscles(pBoc).Thisiscloselyfollowed including phosphorylation by Ca2(cid:1)/calmodulin-dependent by a contraction of the anterior body wall muscles and then protein kinase type II (CaMKII) and interactions with Ca2(cid:1)- expulsionoftheluminalcontents.Geneticanalyseshaveshown binding proteins such as calmodulin (CaM), calcineurin that intestinal cell-autonomous oscillatory Ca2(cid:1) signaling is homologousprotein(CHP),andtescalin(reviewedinRefs.26) centraltothedefecationpacemaker(22).Thefirstmotorstep and45).Thus,Ca2(cid:1)hastheabilitytobothpositivelyandneg- of the DMP, pBoc, depends on Ca2(cid:1) signals initiating in the ativelyregulateNa(cid:1)/H(cid:1)exchangeandcandosoinanisoform- posterior cells of the intestine (17, 18), whereas a subsequent andcell-specificmanner. waveofCa2(cid:1)thatpropagatesposterior-to-anteriorisnecessary Here,wepresenttheresultsofastructure-functionanalysis for the coupling and timing of the remaining motor steps focused on deciphering if and how Ca2(cid:1) signaling regulates (23–25). NHX-7.WeuseddynamicfluorescentpHimagingtomeasure AroleforprotonsignalingduringtheDMPemergedfrom NHX-7 activity both in cells in culture and in live moving reportsindicatingthatincreasedCa2(cid:1)causedprotonstomove worms, where we could assess behavioral output. We hereby fromtheintestinallumenintothecytoplasm,resultinginintra- describearoleforCaM-andphosphatidylinositol4,5-bisphos- cellular acidification, and that this in turn triggered proton phate (PIP )-binding motifs in activation of the exchanger. 2 extrusion across the basolateral membrane via the Na(cid:1)/H(cid:1) AlthoughwewerefurtherabletodemonstratethatCaMinter- exchanger NHX-7 (17, 18). Proton secretion was found to be actsdirectlywithNHX-7,wealsofoundthatitimpactsoscilla- bothnecessaryandsufficienttotriggerpBoc.Mechanistically, tory Ca2(cid:1) signaling upstream of NHX-7. Finally, a potential extracellular acidification resulting from NHX-7 activity was roleforCaMKIIphosphorylationinlimitingtheextentofpro- foundtoprovideprotonsubstratesthatbounddirectlytoand ton transport may relate to the observation that extracellular activatedaligand-gatedcationchannel,PBO-5/6(pH (cid:2)6.8), acidification provides feedback inhibition and likely prevents 50 expressed on the muscle membrane. Activation of PBO-5/6 metabolicacidosisfromoccurring. resultedinmuscledepolarizationandpBoc(17).Thiswasthe firstexampleofprotonsandaNa(cid:1)/H(cid:1)exchangercontributing EXPERIMENTALPROCEDURES toacuteintercellularsignaling. Strains—Standard nematode culture techniques were used Na(cid:1)/H(cid:1) exchangers are a 12-transmembrane-spanning (46). Strains containing pbo-4(ok583)X, pbo-5(n2303)V, and family of phosphoglycoproteins that contain a hydrophobic pha-1(e2123ts)IIIalleleswereobtainedfromtheCaenorhabdi- N-terminal region and a large cytoplasmic C-terminal tail. tis Genetics Center (University of Minnesota) and the TheyexchangeoneextracellularNa(cid:1)foroneintracellularH(cid:1) C.elegansGeneKnockoutConsortium.Otherstrainsusedin toregulateintracellularpH(pH)andtomaintainNa(cid:1)homeo- this work are described in detail under supplemental Experi- i stasis (26). They facilitate adhesion, migration, proliferation, mentalProcedures.” andvolumeregulation(27–32)andhavebeenimplicatedina QuantitativeRT-PCR—Geneexpressionlevelswereassayed numberofhumandiseases,includingepilepsy,mentalretarda- infirst-strandcDNAsamplesusingiQTMSYBR(cid:2)GreenSuper- tion,andcancermetastasis,inadditiontobeingacomponentof mix (Bio-Rad) and standard protocols for real-time PCR and ischemia/reperfusion injury (2–4). Mammals have nine iso- normalizedtobothpmp-3andcdc-42usingthefollowingprimer formsofNa(cid:1)/H(cid:1)exchangerstermedNHEs(33–40),whereas pairs: nhx-7, 5(cid:3)-CAGTACACTTTGCGAGTCGCTTAT-3(cid:3) the nematode C.elegans likewise codes for nine isoforms and 5(cid:3)-AGTTTGATCGTAGAACCCTGGATG-3(cid:3); pmp-3, termedNHXs(41).Althoughsomeoftheseisoformsareubiq- 5(cid:3)-GTTCCCGTGTTCATCACTCAT-3(cid:3) and 5(cid:3)-ACACCGT- uitouslyexpressed(NHE1(42)andNHX-4(41))ina“house- CGAGAAGCTGTAGA-3(cid:3);andcdc-42,5(cid:3)-CTGCTGGACAG- keeping” manner, others demonstrate a high degree of cell- GAAGATTACG-3(cid:3) and 5(cid:3)-CTCGGACATTCTCGAAT- specific expression, suggesting potentially unique modes of GAAG-3(cid:3). regulationandfunction. MolecularBiology—Plasmidconstructswerecreatedbycon- The basal activity of these NHEs can be modulated via a ventional restriction site-mediated cloning methods. Site-di- cytoplasmicallostericproton-bindingsitethatenhancesactiv- rectedmutagenesiswasusedtointroducepointmutants,and ityuponintracellularacidification(lowpH)(43)aswellasby inversePCRwasusedtocreatedeletions.Specificdetailsasto i various protein interactions with regulatory motifs located in the construction of the plasmids can be found under supple- the C-terminal tail (26). This intracellular tail has also been mental “Experimental Procedures.” A plasmid containing the showntobethesiteofregulationbyproteinkinases,andthese extracellularpHsensorwasakindgiftofDr.L.PabloCid(Cen- regulatoryeventscanbeamorepowerfuldeterminantofactiv- tro de Estudios Científicos, Valdivia, Chile) and has been itythantheoverallexpressionlevelofagiventransporter(44). describedpreviously(47).AllconstructswereverifiedviaDNA Oneubiquitousandwellstudiedregulatorymechanismisthat sequencing. Contraction Measurements—pBoc strength and duration 2Theabbreviationsusedare:DMP,defecationmotorprogram;pBoc,poste- were determined post hoc from transmitted light videos by riorbodywallmusclecontraction;NHE,mammalianNa(cid:1)/H(cid:1)exchanger; measuringtheperimeteroflateL4wormsintheirmaximally NHX,C.elegansNa(cid:1)/H(cid:1)exchanger;CaMKII,Ca2(cid:1)/calmodulin-dependent relaxed and contracted states. Worms in which the reference proteinkinasetypeII;CaM,calmodulin;CHP,calcineurinhomologouspro- points were obscured by movement, in either assay, were tein;PIP ,phosphatidylinositol4,5-bisphosphate;rNHE1,ratNHE1;CBD, 2 CaM-bindingdomain;DIC,differentialinterferencecontrast. excludedfromanalysis. FEBRUARY22,2013•VOLUME288•DNoUwMnlBoaEdRe8d from http://www.jbc.org/ at University of Rochester on JunJeO 1U7R, N20A1L3OFBIOLOGICALCHEMISTRY 5887 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans FIGURE1.PhysiologiccharacterizationofrecombinantNHX-7activity.AP-1cells,aCHOcellderivativethatlacksNHEactivity,wereusedfortransient expressionandfluorescence-basedpHmeasurementsofrecombinantNa(cid:1)/H(cid:1)activity.A,representativetracesofNa(cid:1)-dependentpHrecoveryfollowing acidificationincellsexpressingC.elegansNHX-7orratNHE1asindicated.ThenegativecontrolwasthepcDNA3.1vectoralone.B,pH dependenceofNHX-7. Tocalculateinstantaneousrecoveryratedata,abestlinefitequationwascalculatedfora1-minwindowfollowingthere-additionofeNa(cid:1)ofaplotofdpH/dt versuspHandextrapolatedtopH6.1.Eachdatapointrepresentsthreetofourreplicateexperiments((cid:5)10cellsperexperiment).Themeanandmedianiare designatedbythesmallinteriorboxandhorizontalline,respectively.Error(largebox)isS.E.,whiskersrepresentthemaximumandminimumvalues,andasterisks indicatep(cid:6)0.05versuspH7.6viaanalysisofvariance.C,schematicofNHX-7protein:domainorganizationandCa2(cid:1)regulatorymotifs.Transmembrane domainsarelabeledwithRomannumerals.Relevantnhx-7mutantallelesarelistedinitalics,withtheirpositionsdenotedbyarrows.ok583isadeletionallele thatactsasanull,whereasn2568andox10resultintruncatedproteins.MotifstargetedformutagenesiswerebaseduponhomologywithratNHE1(supple- mentalFig.S1)andaredenotedaswell.TheE271QporemutationisindicatedbyanasteriskintransmembranedomainVII.Othertargetsaremarked schematicallyandbyaminoacidlocationwithinthenhx-7C-terminalcodingsequence,includingCHP,PIP ,andCBDmotifsandthesinglepotentialCaMKII phosphorylationsiteatThr-618.FusionsbetweentheNterminusofNHX-7andtheCterminusofotherNa(cid:1)2/H(cid:1)exchangersoccurinaconservedsequencein transmembranedomainXII. Imaging Fluorescent Biosensors in C.elegans—Transgenic fusionproteinswith[35S]methionine.Proteinsassociatingwith nematodeswereimagedliveandunrestrainedasdescribedpre- biotinylatedbovineCaM(5(cid:1)M;Calbiochem)wereprecipitated viously (18). Imaging was performed with a 10(cid:4) Nikon Plan withstreptavidin-agarose.Equivalentfractionsofthestarting Apoobjective.IlluminationwasprovidedbyaPolychromeIV andboundmaterialwereresolvedbySDS-PAGEandvisualized monochromator (TILL Photonics) rigged to a Nikon Eclipse usingautoradiography. TE2000-S inverted microscope equipped with a high-speed RNAiTreatmentandDMPAssay—Nematodesweregrown charge-coupleddevicecamera(Cooke).TILLvisIONsoftware onbacteriaexpressingdouble-strandedRNAasdescribed(50). wasusedforanalysis,datawerecompiledinMicrosoftExcel, ExecutionoftheDMPwasvisualizedunderadissectingmicro- andgraphsweregeneratedusingOrigin. scope, and timing data were collected using Etho software, a MeasurementsofNa(cid:1)/H(cid:1)ExchangeActivityinAP-1 Cells— keystrokerecorder(51). AP-1cellswereculturedasdescribed(48)andtransfectedusing RESULTS LipofectamineLTXreagent(Invitrogen).After24h,cellswere madequiescentbyplacingtheminlow-serummediumforat Recombinant NHX-7 Is an Authentic Na(cid:1)/H(cid:1) Exchanger— least1h.ThecellswerethenloadedwiththepH-sensitivefluo- ToanalyzeNHX-7exchangeactivity,acDNAwasexpressedin rescent dye 2(cid:3),7(cid:3)-bi-(2-carboxyethyl)-5(6)-carboxyfluorescein AP-1 cells, a mammalian cell line that lacks endogenous acetoxymethyl ester (Molecular Probes) and superfused with Na(cid:1)/H(cid:1) exchanger activity (31). Antibody staining of a V5 physiologic saline on a Nikon/TILL Photonics fluorescent epitopetagbuiltintotheCterminusofNHX-7confirmedits imagingrig(describedabove),andincubationwithhighK(cid:1)/ni- expression at the plasma membrane (see Fig. 3F). As is com- gericin at varying pH values was used to calibrate the sensor monlyobservedwithoverexpression,someoftheproteinwas (49). To measure Na(cid:1)/H(cid:1) exchange activity, an ammonium retainedintheendoplasmicreticulumaswell.Totestwhether prepulsewasemployedasdescribed(48). ornottheexchangerwasactive,anammoniumprepulsewas ConfocalMicroscopy—Confocalmicrographswereobtained usedtoacidifythecells(52),andtherateofNa(cid:1)-dependentpH onanOlympusIX81invertedlaserscanningconfocalmicro- recovery was then measured. Eliciting NHX-7 activity from scope.Thesameparameterswereusedforallofthemutants transfectedcellsrequiredthattheybestarvedofserumandthat whenimagingacrosswormstrainsoracrosstransfections. the measurements be performed within 24 h of transfection. Immunocytochemistry—Recombinant NHX-7 was detected Robustactivitywasobserved,althoughthecalculatedexchange using a mouse anti-V5 monoclonal antibody (1:2000; Invit- rateofNHX-7wasslowerthanthatoftheubiquitousmamma- rogen)andanAlexaFluor488-labeledgoatanti-mousesec- lianexchangerNHE1(Fig.1A).TheNHX-7exchangeratewas ondaryantibody(1:5000;MolecularProbes)usingstandard sensitivetoextracellularpH(pH )(Fig.1B)andNa(cid:1)(K (cid:2)35 e m techniques. mM).Surprisingly,agoniststhatraisedintracellularCa2(cid:1)levels CaM Binding Assay—In vitro transcription/translation hadnosignificanteffectonrecombinantNHX-7activity(data (TNT;Promega)oflinearizedtemplateDNAwasusedtolabel notshown). 5888 JOURNALOFBIOLOGICALCDHoEwMnIlSoTaRdYed from http://www.jbc.org/ at University of Rochester on JuVnOe L1U7M, 2E012388•NUMBER8•FEBRUARY22,2013 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans FIGURE2.Invivostructure-functionanalysisofNHX-7.Atransgenicconstructcodingforannhx-7minigenefusedtoacDNAfortheredfluorescentprotein mCherrywasmutatedatpotentialCa2(cid:1)regulatorymotifsorreplacedwithahomologousregionfromrNHE1orNHX-6.Theabilityoftheseconstructstorestore pBocstrengthinannhx-7(ok585)nullmutantwasassessed.A,confocalmicrographofpnhx-7::NHX-7::mCherryrescueconstructexpressioninintestinalrings 7–9(lower)anddifferentialinterferencecontrast(DIC)(upper).Thewhitearrowpointsfromposteriortoanteriorandisscaledto50(cid:1)m.B,representative contractionassayusingperimeteranalysis.ValueswerecalculatedposthocfromaDICvideobymeasuringtheperimeter(dashedlines)ofthewormatboth maximalrelaxation(lower)andcontraction(upper).Arrowsindicatethevulvaandanus,whichwereusedasanteriorandposteriorreferencepoints,respec- tively.Anexamplecalculationisshownintheinset.C,mutantpBocstrength.Transgenicconstructsaredenotedasfollows:NHX-7(cid:1)istheWTtransgene;ox10 recapitulatesaloss-of-functionmutationidentifiedthroughaforwardgeneticscreen(deletion/frameshiftstartingapproximatelyA702);E271Qisapore mutation;NHX-7::rNHE1andNHX-7::NHX-6arefusionsbetweenthetransmembranedomainofNHX-7andthecytoplasmicdomainoftheindicatedNHEs; (cid:7)PIP isamutationofthePIP -bindingsite(K569A/K570A);T618AisamutationofaCaMKIIrecognitionsite;(cid:7)CBDisadeletionoftheCBDfromaminoacids 695t2o723;(cid:7)CHPisamutation2ofthePBO-1-bindingsite(aminoacids541–545,MVQHLtoRRQHR).ErrorisS.D.forbetween7and27wormsperstrain.Asterisks denotep(cid:6)0.05versusthewild-typecontrolviaanalysisofvariance. TABLE1 CharacteristicsofinvivoNHX-7mutagenesis ShownbelowaretherelativeacidificationratesandpBocstrengthanddurationintransgenicwormsexpressingmutantversionsofNHX-7.pBocdurationvalueswere derivedposthocfromDICvideos.pbo-5mutantslackpBoc,butNHX-7activityisidenticaltowild-typecontrols.Thenhx-7(ok583)mutantstrainsexpressingrescue constructsalsocontainedthepha-1andhim-5mutantalleles.ErrorisS.D.forcontractionstrengthanddurationandS.E.foracidificationrate.Thenvalueforeachtrialis showninparentheses.ND,notdetermined. Rescuing Contraction Contraction Geneticbackground construct Activity strength duration % % s pbo-5(n2303) 100(cid:8)10(3) ND ND pha-1(2123ts)/him-5(e1490) ND 14.1(cid:8)2.8(13) 4.1(cid:8)0.8(13) nhx-7(ok583) 20(cid:8)1(3)a 3.9(cid:8)2.0(17)a 3.1(cid:8)0.8(16)a nhx-7(ok583) NHX-7(cid:1) 120(cid:8)10(3) 13.3(cid:8)3.2(7) 5.0(cid:8)1.0(7) nhx-7(ok583) ox10 26(cid:8)4(3)a 5.7(cid:8)4.2(27)a 3.3(cid:8)1.1(24) nhx-7(ok583) E271Q 14(cid:8)2(3)a 4.4(cid:8)2.9(11)a 2.6(cid:8)0.3(9)a nhx-7(ok583) NHX-7::rNHE1 67(cid:8)9(3) 13.2(cid:8)2.8(12) 3.8(cid:8)0.7(12) nhx-7(ok583) NHX-7::NHX-6 26(cid:8)4(3)a 1.6(cid:8)0.4(8)a 1.1(cid:8)0.2(5)a nhx-7(ok583) (cid:7)PIP 31(cid:8)6(3)a 13.2(cid:8)1.5(10) 3.4(cid:8)0.4(10) nhx-7(ok583) T6182A 110(cid:8)20(3) 13.3(cid:8)1.8(11) 5.7(cid:8)0.5(11)a nhx-7(ok583) (cid:7)CBD 50(cid:8)4(3)a 10.8(cid:8)1.7(8)a 3.4(cid:8)0.3(9) nhx-7(ok583) (cid:7)CHP ND 3.0(cid:8)2.1(10)a 3.0(cid:8)0.3(10)a nhx-7(ok583) rNHE1 30(cid:8)5(3)a 4.3(cid:8)1.7(9)a 3.9(cid:8)0.7(4) a p(cid:6)0.05versustheNHX-7(cid:1)controlviaanalysisofvariance. NHX-7IsRegulatedSimilarlytoMammalianNHEs—Asan “regulatory domain” (supplemental Fig. S1). These shared alternative approach to AP-1 cells, we turned to an in vivo motifs are likely to be functionally sufficient for coordinating modeltotestwhetherCa2(cid:1)regulatesNHX-7.First,theability upstream signaling, as the C-terminal coding sequence of rat of recombinant NHX-7 to complement a C.elegans nhx- NHE1(rNHE1)effectivelysubstitutedforthatofNHX-7inthe 7(ok585) loss-of-function mutant was tested. An mCherry rescueconstruct(Fig.2C).Conversely,asimilardomainswap fusion to NHX-7 (Fig. 2A) rescued the pBoc deficit in the betweenNHX-7andNHX-6,awormexchangerthatiscoex- mutant(Fig.2CandTable1),consistentwithpreviousobser- pressed with NHX-7 in the intestine (41) but lacks notable vations regarding an NHX-7::GFP fusion protein (18). The homologousmotifsforinputbyCa2(cid:1)signaling(supplemental specificityofrescuewassuggestedbytwoobservations:reca- Fig.S1),didnotrescuethemutant(Fig.2C).However,NHE1 pitulatingannhx-7(ox10)loss-of-functionmutationthatarises could not fully substitute for NHX-7, suggesting that there is fromadeletion/frameshiftstartingataboutA702suppressed someinnatepropertyofNHX-7outsideoftheCterminusthat theabilitytorestorepBoc,asdidmutationofacriticalamino strongly influences its ability to effectively function, through acid residue in the pore region (E271Q) that is essential for promoting proper localization, association with another pro- Na(cid:1)/H(cid:1)exchangeactivity(Fig.2C). tein(s),ortransportactivityitself. NHX-7hasseveralmotifsforinputbyCa2(cid:1)signaling(Fig. MutationofPutativeMotifsforCa2(cid:1)RegulationofNHX-7— 1C),whicharesharedwithmammalianNHE1initsC-terminal ConservedpotentialCa2(cid:1)regulatorymotifsinNHX-7(Fig.1C) FEBRUARY22,2013•VOLUME288•DNoUwMnlBoaEdRe8d from http://www.jbc.org/ at University of Rochester on JunJeO 1U7R, N20A1L3OFBIOLOGICALCHEMISTRY 5889 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans FIGURE3.Analysisofinvivo/invitroexchangeractivity.AgeneticallyencodedfluorescentpHsensorwastargetedtotheextracellularsideoftheposterior intestinalbasolateralmembranetomeasureregionalchangesinpseudocoelomicpHduringdefecationintransgenicstrainsexpressingWTandmutantnhx-7 minigenes.Tomeasurethebasalactivityofrecombinantproteins,pH wasmonitoredintransfectedAP-1cellsinculture,andtherateofNa(cid:1)-dependentpH i recoveryfollowingacidificationwascalculated.A,confocalmicrographoftransgenicwormsexpressingtheextracellularpHsensoratthebasolateralmem- braneofintestinalrings7–9.Thewhitearrowdenotesposterior-to-anteriororientationofthewormandisscaledto50(cid:1)m.B,schematicoftheextracellularpH sensorwithprotonsmovingfromtheintestineintothespacebetweencells.C,representativetraceofextracellular(pseudocoelomic)pHfluctuationsthat occurbetweentheintestineandbodywallmusclerelativetopBoc.DynamicfluorescentmeasurementsofpH infreelymovingwormswereusedtocalculate e theinitialrateofacidification(dpH/dt),whichisafunctionofNHX-7activity.D,extracellularacidificationratesresultingfromexpressionofthemutant constructsarerepresentedasnormalizedtothecontrolstrain.TherestingpHofthepseudocoelomwasnotsignificantlydifferentbetweenstrains,andthe overallextentofacidificationwasproportionaltotheinitialrateofacidification.ErrorisS.E.forthreeindependenttrials,withmorethanfivewormspertrial. Asterisksindicatep(cid:6)0.05comparedwiththewild-typecontrolviaanalysisofvariance.E,instantaneousNa(cid:1)/H(cid:1)exchangeratedataformutantNHX-7 constructsexpressedinAP-1cellsinvitro.Tocalculateinstantaneousrecoveryratedata,abestlinefitequationwascalculatedfora1-minwindowfollowing there-additionofNa(cid:1)ofaplotofdpH/dtversuspHandextrapolatedtopH6.1.Valueswereobtainedfrombetweenthreeandnineindependentexperiments, with(cid:5)10cellsimagedperexperimenit.Themeanandmedianaredesignatedbythesmallinteriorboxandhorizontalline,respectively.Error(largebox)isS.E., whiskersrepresentthemaximumandminimumvalues,andasterisksindicatep(cid:6)0.05comparedwithcellsexpressingthewild-typeNHX-7viaanalysisof variance.F,confocalmicrographofanAP-1cellexpressingrecombinantV5epitope-taggedNHX-7thathasbeenvisualizedusinganti-V5primaryand fluorescentAlexaFluor488-conjugatedanti-mousesecondaryantibodies.Scalebar(cid:9)10(cid:1)m.G,schematicofpH measurementsincellculturewithprotons movingoutofthecellintothemedium.H,representativetraceofpH duringNa(cid:1)-dependentpHrecoveryfolliowingacidification.Therecoveryratewas i calculatedbaseduponaplotofdpH/dtversuspH,withabestfitlineextrapolatedtopH6.1. i i were individually mutated, and the mutant constructs were CaMKII (T618A) mutants still rescued pBoc completely, but tested for their ability to complement the loss-of-function deletion of the CBD ((cid:7)CBD) or CHP-binding sites ((cid:7)CHP) mutant. These motifs included 1) a CaM-binding site of the reducedpBocstrength(Fig.2C).The(cid:7)CBDmutationresulted 1-5-8-14class,2)asiteforPIP binding,3)aCaMKIIphosphor- inasmallbutsignificantdecreaseinpBocstrength,whereasthe 2 ylation site, and 4) a binding site for the C.elegans CHP (cid:7)CHPmutationsuppressedtheabilityofthetransgenetores- orthologPBO-1(54).Althoughthereareotherpotentialsites cuepBocentirely(Table1).Confocalmicroscopywasusedto forCa2(cid:1)regulation,thesefoursitesrepresentedthemostlikely establishtheabundanceandmembranelocalizationofthefluo- candidates for the following reasons. First, the nonfunctional rescentmCherry-taggedNHX-7mutantproteins,andwhereas proteincodedforbythenhx-7(ox10)allelehasbeenshownto most of the mutants were indistinguishable from wild-type be truncated immediately prior to the start of the potential NHX-7::mCherry (data not shown), the (cid:7)CHP protein accu- CaM-binding domain (CBD), suggesting that CaM binding mulatedatintracellularlocationsratherthanatthebasolateral might be import for NHX-7 function (17). Second, PIP is a membrane.3 2 necessarycofactorforavarietyofplasmamembranetransport- WenextconsideredtheideathatthestrengthofpBocmay ers,includingNHEs(55),andduringdefecation,reductionsin notdirectlyreflectNHX-7activity.pBocistriggeredbyactiva- PIP havebeenshowntoactivateTRPMchannels,hencecoor- tionofprotonreceptors,whosepK is(cid:2)6.8(17),onthebody 2 a dinatingtheiractivitywithphospholipaseC-mediatedinositol wall muscle cells, but proton extrusion, receptor activation, trisphosphate production (56). Third, CHP is a cofactor for muscle response, and proton clearance mechanisms all likely NHEs that has been suggested to mediate Ca2(cid:1) regulation of impacttheoverallsignalingoutput.Therefore,itseemedpos- the exchanger (57, 58), and a pbo-1 loss-of-function mutant siblethatreductionofNHX-7activitycouldresultincompen- lacks pBoc (54). Finally, phosphoregulation by CaMKII of a sation from these other mechanisms or perhaps that NHX-7 conserved site in NHE1 increases its activity in response to normallyextrudesanabundanceofprotonsaboveandbeyond Ca2(cid:1)signaling(59,60). thatnecessaryforanormalbehavioralresponse.Ifthatwerethe Wewereinitiallyquitesurprisedtofindthatallofthemutant case, then reductions in NHX-7 activity might be tolerated constructs supported robust pBoc (data not shown), at least withoutacorrespondingreductionincontractionstrength. until we considered that the mutant transgenes were being WesurmisedthatmeasuringchangesinpH directlymight e overexpressed and that overexpression could conceivably be more informative regarding the mutations’ effects on circumvent endogenous regulatory mechanisms. Hence, we NHX-7 activity. To accomplish this, an extracellular pH bio- establishedstrainsthatapproximatedthewild-typeexpression levels of nhx-7 as judged by quantitative RT-PCR (data not shown).Withinthiscontext,thePIP -bindingsite((cid:7)PIP )and 3E.AllmanandK.Nehrke,unpublisheddata. 2 2 5890 JOURNALOFBIOLOGICALCDHoEwMnIlSoTaRdYed from http://www.jbc.org/ at University of Rochester on JuVnOe L1U7M, 2E012388•NUMBER8•FEBRUARY22,2013 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans sensor(47)wasexpressedintheposteriorintestinalcellsand directedtothebasolateralmembrane(Fig.3,AandB).Inagree- mentwithpreviousresults(18),wewereabletodetectatran- sientrobustacidificationoftheextracellularspacebetweenthe posteriorintestineandtheoverlyingbodywallmuscleduring pBocinlivemovingworms(Fig.3C).Theobservedacidifica- tion was largely absent in nhx-7(ok583) mutant worms, and measurements made in a pbo-5(n2303) background, which lackstheprotonreceptorandpBoc,suggestedthatthesignal wasnotinfluencedbymusclecontractility(Table1).Wethen assessed the effect of each mutation on pH fluctuations and e extendedthisanalysistoincludestrainsexpressingthechime- ric fusions with NHX-6 and rNHE1 described above (Fig. 3D andTable1). Ourresultssuggestthatthreedistinctcategoriesofmutant phenotypesexist.TherearemutantsthatsupportnormalpH oscillations and rescue pBoc, mutants that have reduced exchangeactivitybutstillrescuepBoc,andmutantswithlittle ornoexchangeactivityanddonotrescuepBoc.Thislastclass mimics the nhx-7(ok583) null mutant. These results are con- sistentwithourhypothesisthatareductioninNHX-7activity canbetoleratedwithoutcausingavisiblephenotype.Forexam- ple,the(cid:7)CBD,(cid:7)PIP ,andchimericrNHE1proteinsallrescued 2 FIGURE4.AnalysisofinvitrocalmodulinbindingbyNHX-7.Thecytoplas- pBocatleasttosomeextent,butpH measurementssuggested micCterminiofbothNHX-7andrNHE1wereexpressedinvitroasradiola- e that they are less active than wild-type NHX-7 (Fig. 3D). In beledproteins,andtheirabilitytobindtobiotinylatedbovinecalmodulin (bio-CaM;98%identicaltowormCMD-1)wasassessedbystreptavidinfrac- contrast,theNHX-6chimera,(cid:7)CHPmutant,ox10mutant,and tionation,gelelectrophoresisofthestartingandboundfractions,andauto- E271Qporemutantresembledthenullmutantandexhibited radiographic detection. A, autoradiograms of gel-fractionated 35S-labeled proteins.Thestartingproductsfrominvitrotranscription/translationreac- low-amplitudepHoscillationsthatwereunabletoinvokecon- tions(left)andboundfractions(right)areshown.Anequivalentfractionof tractions.Theresidualoscillationsobservedinthenullmutant eachwasanalyzed.Luciferasewasusedasanegativecontrol.Multipleprod- arelikelyduetotheactivitiesofotherpHhomeostaticmecha- uctsarelikelyduetotheuseofPCR-amplifiedtemplatesforinvitrotranscrip- tionanddonotinterferewiththeconclusion.Predictedmolecularmassesare nisms responding to intracellular acidification and causing asfollows:rNHE1,(cid:2)36kDa;NHX-7,(cid:2)31kDa;andluciferase,61kDa.B,the somelowlevelofprotoneffluxintothepseudocoelom.Finally, CBD(identicalto(cid:7)CBD)wasdeleted,andtheabilityofthemutant(cid:7)CBD wenotethattheT618AmutationoftheputativeCaMKIIphos- proteintobindCaMwasassessedasdescribedabove.Arrowsdenoteslight residualCaMbinding.Thepredictedmolecularmassof(cid:7)CBDis(cid:2)28kDa. phorylation site appears to have increased the activity of NHX-7,resultinginastrongcontractionthatwasextendedin duration(Table1). inAP-1cells(Fig.3E).Thiscouldconceivablybeduetohigher Todirectlyassesswhetherthereducedactivityobservedwith levelsofPIP inwormsversuscellsinculturecompensatingfor 2 several of the mutants might be due to a reduction in basal reducedPIP bindingaffinityinthemutatedexchanger,butitis 2 levels of transport rather than disruption of Ca2(cid:1) signaling also possible that Ca2(cid:1) activation in worms overcomes the input, these mutants were expressed in AP-1 cells, and their observedreducedbasalactivity.Regardless,thisresultisincon- transportratesweremeasuredunderquiescentconditions(Fig. sistent with the idea that reductions in PIP might activate 2 3,E–H).ApproximatelyequallevelsofNHX-7expressionand NHX-7suchastheydoTRPMchannelsduringdefecation(56). residenceattheplasmamembraneforeachofthemutantpro- NHX-7/Calmodulin Binding and Knockdown of cmd-1, a teinsweresuggestedbyimmunolabelingandconfocalmicros- NematodeCalmodulinGene—Theresultsofourmutagenesis copy (data not shown). Surprisingly, unlike our single-copy suggestedthatCaMbindingcontributestoNHX-7protonsig- genewormmodel,wefoundthatenoughofthe(cid:7)CHPmutant nalingduringdefecation.Totestthismoredirectly,anNHX-7 was trafficked to the cell surface in AP-1 cells to permit C-terminalproteinfragmentwaslabeledwith[35S]Metviain Na(cid:1)/H(cid:1)exchangeactivityatsimilarlevelsaswild-typeNHX-7 vitro transcription/translation, and the ability of the labeled (Fig. 3E). Thus, the inability of the (cid:7)CHP mutant to trigger protein to associate with biotinylated CaM was assessed by pBocwasnotduetoitlackingtransportactivity.Similarly,the coprecipitation.NHE1,whichisknowntobindCaM(61),was reducedactivityofthe(cid:7)CBDmutantobservedinwormswas usedasapositivecontroltovalidatetheassay(Fig.4A).CaM notasecondaryconsequenceofreducedbasaltransportcapac- associatedwiththesolublecytoplasmicCterminusofNHX-7 ity (Fig. 3E). On the other hand, the enhanced activity of the butdidnotassociatewithluciferase,whichwasusedasaneg- T618AmutantinwormswasrecapitulatedinAP-1cells(Fig. ativecontrol(Fig.4A).WealsofoundthattheK forCaMwas d 3E), suggesting that phosphorylation at Thr-618 by CaMKII similartothatforNHE1((cid:2)8nM)(datanotshown).Toconfirm may normally suppress basal activity. We also found that the the specificity of this interaction, we demonstrated that the (cid:7)PIP mutant,whichhadgreatlyreducedactivityinwormsbut (cid:7)CBDmutationsignificantlyreducedCaMbindingtoNHX-7 2 wasabletosupportanearlynormalpBoc,didnotfunctionatall (Fig.4B). FEBRUARY22,2013•VOLUME288•DNoUwMnlBoaEdRe8d from http://www.jbc.org/ at University of Rochester on JunJeO 1U7R, N20A1L3OFBIOLOGICALCHEMISTRY 5891 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans FIGURE5.Thecalmodulingenecmd-1isrequiredfornormaldefecationsignaling.RNAiwasusedtoreducecmd-1expressionspecificallyintheintestine. Wormswereplacedontocmd-1orcontrolRNAiplatesasL3larva,andmeasurementsweremadefollowing0,18,36,and54hofRNAi.Thefluorescent biosensorsD3cpvandpHluorinwereusedtofollowintestinalCa2(cid:1)andpHoscillations,respectively,ascmd-1expressionwasreducedovertime.A,composite i imageofatransgenicwormexpressingatranscriptionalfusionofthecmd-1promoterandthefluorescentproteinmCherry(left)andthecorrespondingDIC image(right).Thearrowindicatesposterior-to-anteriororientationandisscaledto50(cid:1)m.B,dotplotsrepresentingpBoctiminginindividualwormsfollowing exposuretocmd-1RNAiforthetimeperiodsindicated(0,18,36,and54h).Strongcontractionsareplottedassymbols,whereasshadowsorweakreiterative contractionsareplottedassmallersymbolsofliketypeplacedlowerontheyaxis.C,representativeCa2(cid:1)oscillationsinacmd-1RNAiwormat54h.The oscillatoryperiodshownhereissimilartothatofthebehavioralreiterationsshowninB.D,representativeintestinalpH oscillationsinacmd-1RNAiwormat 54h.NotethatthistracerepresentsfluctuationsinpH ratherthanpH andthattheperiodissimilartothatofbothCa2i(cid:1)oscillationsandpBoc. i e Having confirmed CaM binding and its physiologic rele- principalDMP.Atthispoint,thewormswereessentiallydefe- vance to NHX-7 function, we next asked whether reducing catingevery(cid:2)18s(Fig.5).Continuedexposuretocmd-1RNAi CaM levels in vivo would phenocopy the effect of the (cid:7)CBD ledtothecessationofdefecationentirely,followedbydeathof mutant on pBoc. The C.elegans genome contains five genes theanimal(datanotshown). thatencodeCa2(cid:1)-bindingCaM-likeproteins.Thecmd-1gene GiventhattheDMPisinitiatedbyoscillatoryCa2(cid:1)signaling codes for a nematode CaM ortholog that is 100% conserved and cyclic acidification of the intestine, we used fluorescent with human CALM3. A transcriptional fusion between the biosensors to measure Ca2(cid:1) and pH in the intestines of live cmd-1promoterandtheredfluorescentproteinmCherrycod- moving worms subjected to cmd-1 RNAi. Following 54 h, we ing sequence was broadly expressed in multiple cells and cell observedoscillationsinbothofthesesecondmessengersoccur- types,includingbodywallmuscle,hypodermalcells,neurons, ringevery(cid:2)18s,mirroringtheobservedchangestothebehav- and,mostrelevanttoourwork,posteriorintestinalcells(Fig. ioralperiod(Fig.5,CandD).WeconcludethatCaMdirectly 5A).Therefore,thefunctionalroleofcmd-1wasqueriedusing influences intestinal oscillatory Ca2(cid:1) signaling upstream of RNAi-mediated knockdown. Unfortunately, global RNAi acidification,andhence,itslosshaseffectsthatprecludeanal- screens have shown that cmd-1 is necessary for viability, and ysisofitsroleinregulatingNHX-7directly.Nevertheless,these wormstreatedwithcmd-1RNAiforseveraldaysdied(datanot resultsareinterestinginthecontextofsignalingpathwaysthat shown).Tocircumventthislimitation,weturnedtocell-spe- regulatetheperiodicityofCa2(cid:1)oscillationsandemphasizethe cificRNAi.TheRDE-1proteinisrequiredforeffectiveRNAito integrationbetweenCa2(cid:1)andprotonsignalingduringdefeca- occur,andanrde-1mutantstraincanbecomplementedwitha tioninworms. transgene expressing recombinant RDE-1 in a limited set of DISCUSSION cellssuchastheintestine(25). Here,wefoundthatintestinalRNAiofcmd-1resultedina Na(cid:1)/H(cid:1) exchangers are recognized to contribute to pH i progressivephenotypeinwhichthecumulativelossofcmd-1 homeostasisandelectrolyteandwaterbalance(forreview,see expression altered defecation frequency (Fig. 5B). In general, Ref. 62). Recently, a new role for Na(cid:1)/H(cid:1) exchangers has when young adult worms were subjected to cmd-1 RNAi for emergedfromworkinC.elegansshowingthatNHX-7allows 18h,theybegantoexhibitweakreiterationsoftheDMP.This adjacentcellstocommunicatethroughdirectprotonsignaling hasbeenobservedpreviouslyinunc-43CaMKIIloss-of-func- (17,18).ThiseventiscoordinatedbyoscillatoryCa2(cid:1)signaling, tionmutants(20,25),wherethesereiterationswerereferredto which in turn leads to repetitive cellular acidification and as“shadows”or“echos.”Theintervalbetweentheprincipal,or recovery.Hence,defecationrepresentsabehaviorwhosephys- strong,DMPandtheshadowswasmuchshorter((cid:2)16–18s)in iologicoutputisintegratedbycross-talkbetweenCa2(cid:1)andpH cmd-1RNAiwormsthantheaveragedefecationperiod((cid:2)45s), signals. Counterintuitively, apart from its role in signaling, consistentwithcmd-1normallyfunctioningtosuppressinap- NHX-7contributeslittletore-establishingpHhomeostasisfol- propriateintracycleexecutionoftheDMP.Surprisingly,how- lowingdefecation.BecauseNa(cid:1)/H(cid:1)exchangersareactivated ever,anincreasedtimeofexposuretocmd-1RNAiresultedin byallostericprotonbindingandhavebeenshowntoberegu- notjustasingleshadowoccurringaftertheprincipalDMP,but lated by Ca2(cid:1), it is reasonable to ask whether regulation of multipleshadowsoccurring(Fig.5B).Theperiodbetweenprin- NHX-7byCa2(cid:1)isadeterminingfactorinitsabilitytofunction cipalexecutionsoftheDMPincreasedwithlossofcmd-1pri- asasignalingproteinasopposedtoa“pHhousekeeper.” marily due to an increased number of shadows occurring Apartfromarelativeinsensitivitytotheamiloridederivative between cycles, whereas the period between shadows, which 5-(N-ethyl-N-isopropyl)amiloride,NHX-7functionsmuchlike was (cid:2)18 s, did not increase correspondingly. Eventually, the mammalianNHEsandcanfacilitaterecoveryfrominducedaci- weaker shadows became nearly indistinguishable from the dosiswhentransfectedintocellsinculture(Fig.1).However, 5892 JOURNALOFBIOLOGICALCDHoEwMnIlSoTaRdYed from http://www.jbc.org/ at University of Rochester on JuVnOe L1U7M, 2E012388•NUMBER8•FEBRUARY22,2013 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans initialattemptstodiscernthesignalingpathwaythroughwhich exchangeactivity,couldhavedirectimplicationsinthetrans- Ca2(cid:1)mightstimulateNHX-7werehamperedbythefactthat port of ions (65, 66). Moreover, Ca2(cid:1) regulation of NHX-7 recombinantNHX-7activitywasnotresponsivetopharmaco- appears to be uncoupled from the primary regulation by H(cid:1), logic manipulations that increased intracellular Ca2(cid:1) levels. consistentwiththepHsensorresponsibleforH(cid:1)recognition AlthoughweconsideredthepossibilitythatNHX-7isnotstim- beinglocatedatthebeginningofhelix9ontheoppositesideof ulatedbyCa2(cid:1)signaling,wefeelthatitismorelikelyeitherthat theunwoundhelix11(65). therelevantsignalingpathwayisnotpresentinAP-1cellsor RegulationbyCaMismoredifficulttointerpretmechanisti- thatitdoesnotrecognizethewormsignalingmotifs.Similarly, cally,asitsbindingoccursfartherdownstreamintheC-termi- it is possible that overexpression in cell culture could mask nal tail, and the binding site(s) in NHX-7 and NHE1 are not Ca2(cid:1)regulatoryeffectsonNHX-7. preciselyconservedatthelinearsequencelevel(supplemental Nevertheless,thesesimpleobservationshelpedtoinformus Fig.S1).AlthoughCaMitselfisnotwellstudiedinC.elegans, astohowNHX-7maycontributetotheintegrativephysiology CaMKIIhasbeenstudiedextensively,andgeneticapproaches ofdefecation.Intheworm,protonsareanimportantmeansof have shown that mutations in unc-43, the worm CaMKII performing work, and a proton gradient formed between the ortholog, cause the DMP to be reiterated, albeit weakly (20). intestinallumenandcellisessentialfornutrientuptakeacross This ability of CaMKII to normally suppress inappropriate theapicalmembrane(50,63).Maintenanceofthisgradientis Ca2(cid:1) oscillations between cycles is consistent with cellular criticalandpresentssomephysiologicchallengesgiventhata memory. We discovered that loss of CaM itself resulted in a significant portion of the intestine’s luminal contents are qualitativelysimilarresult(Fig.5).However,wealsodiscovered expulsed every 45 s. To prevent their loss during expulsion, thatthisphenotypewasprogressiveandthatthestrengthand protonsenterthecellfromthelumenduringdefecation.These occurrenceofthesereiterationsbecamemorepronouncedover protonsmustthenbequicklyreturnedtothelumenimmedi- time. Astoundingly, after several days of exposure to cmd-1 atelyfollowingdefecationtodrivenutrientuptake.Viewedin RNAi,thewormswereexecutingtheentireDMPevery(cid:2)18s, thiscontext,sustainedH(cid:1)effluxthroughNHX-7onthebaso- andshortlythereafter,theyexpired. lateralmembranecouldbecatastrophic,leadingtobothcaloric To understand the physiologic alteration accompanying deprivationandsystemicacidosis. theseshadowcontractions,wealsowentontoshowthatlate- Ourdatademonstrateonemechanismforensuringthatpro- stagecmd-1RNAiwormsexhibitedCa2(cid:1)andpHoscillationsat toneffluxtothepseudocoelomicspaceviaNHX-7isacute.A nearly three times the rate of normal worms (Fig. 5). At this brief pulse of activity is sufficient to rapidly acidify the small rate,intestinalpHrecoveryprocesses,mostlikelythoseofthe pseudocoelomtoanadirvalueatwhichwefoundNHX-7was energy-dependent second-phase V-ATPase (63), can not virtuallyinactive(Fig.1B).Therefore,theinherentpH sensi- accommodatethecyclicacidificationthatoccurs,resultingin e tivityofNHX-7appearstoprovideafailsafemethodofensur- sustainedcellularacidosiswellbelowthatofthenormalresting ingthatH(cid:1)signalingisturnedofffollowingstimulationofthe pHat(cid:2)7.4(Fig.5D).Wespeculatethatcmd-1maycontribute muscleprotonreceptor. to regulating the inositol 1,4,5-trisphosphate receptor ITR-1, Atransgenicwormmodelallowedustoperformstructure- whichisthemolecularpacemakerfordefecation.Althoughwe functionmutagenesisofNHX-7andcomplementationofanull foundtheseresultstobenoteworthyandtodeservereporting, mutanttoassesstheroleofpotentialCa2(cid:1)regulatorymotifs. thefactthatcmd-1contributedtoCa2(cid:1)pacemakingandthat OurresultsfrombothbehavioraloutputandinvivopHmea- its loss induced massive cellular acidification derailed our surementstakentogethersuggestthat1)PIP bindingstimu- attemptstoconfirmCaMregulationofNHX-7throughcmd-1 2 latesbasalNHX-7activity,2)CaMbindingcontributestoCa2(cid:1) RNAi. activationofNHX-7,and3)stimulatedNHX-7activityexceeds Considered as a whole, our data support a model in which what is necessary to trigger a “normal” pBoc. Binding of the Ca2(cid:1)activationofNHX-7isnotessentialforitsfunctionbut CHP ortholog PBO-1 appears to affect NHX-7 trafficking may contribute to proton conservation. Moreover, we have and/or membrane residence through an unexplored mecha- shown that PIP binding is required for basal function of the 2 nism(datanotshown);hence,wewereunabletodefineitsrole exchangerandsuggestedthatCa2(cid:1)mayalsoplayaroleinsup- in Ca2(cid:1) activation, although given its EF-hand Ca2(cid:1)-binding pressingtheactivityofNHX-7followingitsactivation.Finally, domains,wehypothesizethatitmayservedualrolesintrans- althoughitappearslikelythatCaMhelpstocoordinateCa2(cid:1) portandsignaling.WealsofoundthataT618Amutationofa activationofNHX-7,italsoregulatesoscillatoryCa2(cid:1)signaling potentialCaMKIIphosphorylationsiteincreasedtheduration frequencyupstreamofNHX-7activity. of pBoc and the period of extracellular acidification during Inconclusion,theapparentsensitivityofNHX-7withinthe pBoc (Fig. 3 and Table 1). Although the effect of the T618A integrativecontextofdefecationtochangesinbothCa2(cid:1)and mutationwasrelativelymodest,phosphorylationbyCaMKIIat pHisconsistentwiththeimportancethatprotonsplayinintes- this site may provide a “cellular memory” of Ca2(cid:1) signaling, tinalphysiologyinthewormbutmayalsoprovidemechanistic suchasoccursduringlong-termpotentiationinneurons(64), insights into the regulation of NHE activity in mammals. For hencecontributingtofeedbackinhibitionofNHEactivity. example,Na(cid:1)/H(cid:1)exchangehasbeenimplicatedintheregula- Interestingly,crystalstructuredatafrombacterialNhaAand tionofsynaptictransmissionatglutamatergic,GABAergic,and fromaCHP/NHE1fragmentsuggestapossiblemechanismof dopaminergicsynapses(67–69),andNHE1hasbeenshownto action for CHP and PIP whereby their binding near helical contributetosynapticacidificationandthecreationofanacidic 2 segment 11, which has been shown to be important for microdomain at the synaptic cleft (70). It is likely not coinci- FEBRUARY22,2013•VOLUME288•DNoUwMnlBoaEdRe8d from http://www.jbc.org/ at University of Rochester on JunJeO 1U7R, N20A1L3OFBIOLOGICALCHEMISTRY 5893 Ca2(cid:1)SignalingRegulatesNa(cid:1)/H(cid:1)ExchangeinC.elegans dental that synaptic vesicle release is a Ca2(cid:1)-mediated event. apse.J.Neurosci.25,4108–4117 Alternatively, NHE5 is credited with supporting neuronal 17. Beg,A.A.,Ernstrom,G.G.,Nix,P.,Davis,M.W.,andJorgensen,E.M. (2008)ProtonsactasatransmitterformusclecontractioninC.elegans. activity-dependentdendriticspinegrowththroughanovelpH- Cell132,149–160 mediatednegativefeedbackmechanism(53).Theseresultssug- 18. Pfeiffer,J.,Johnson,D.,andNehrke,K.(2008)Oscillatorytransepithelial gestthatacutecontrolofpHandprotontransportacrossthe H(cid:1) flux regulates a rhythmic behavior in C.elegans. Curr. Biol. 18, membranehasprofoundconsequencesformammalianneuro- 297–302 physiologyandmaypotentiallyaffectcommunicationbetween 19. Thomas, J. H. (1990) Genetic analysis of defecation in Caenorhabditis adjacent cells in a variety of contexts, including, as we have elegans.Genetics124,855–872 20. Liu,D.W.,andThomas,J.H.(1994)Regulationofaperiodicmotorpro- shown here, during signaling between intestinal and muscle graminC.elegans.J.Neurosci.14,1953–1962 cellsinC.elegans. 21. Croll,N.A.,andSmith,J.M.(1978)Integratedbehaviourinthefeeding phaseofCaenorhabditiselegans(Nematoda).J.Zool.184,507–517 Acknowledgments—We thank Teresa Sherman for technical assis- 22. DalSanto,P.,Logan,M.A.,Chisholm,A.D.,andJorgensen,E.M.(1999) tance,Dr.L.PabloCidfortheextracellularpHsensor,andDr.Mau- The inositol triphosphate receptor regulates a 50-second behavioral reenPetersforcriticalcomments.Somestrainsusedinthisworkwere rhythminC.elegans.Cell98,757–767 provided by the C.elegans Gene Knockout Consortium and the 23. Espelt,M.V.,Estevez,A.Y.,Yin,X.,andStrange,K.(2005)Oscillatory Ca2(cid:1)signalingintheisolatedCaenorhabditiselegansintestine:roleofthe Caenorhabditis Genetics Center, which is supported by National inositol-1,4,5-trisphosphate receptor and phospholipases C (cid:2)and (cid:3). Institutes of Health Office of Research Infrastructure Program P40 J.Gen.Physiol.126,379–392 OD010440. 24. Teramoto,T.,andIwasaki,K.(2006)Intestinalcalciumwavescoordinate abehavioralmotorprograminC.elegans.CellCalcium40,319–327 25. Nehrke,K.,Denton,J.,andMowrey,W.(2008)IntestinalCa2(cid:1)wavedy- REFERENCES namicsinfreelymovingC.eleganscoordinateexecutionofarhythmic 1. Casey,J.R.,Grinstein,S.,andOrlowski,J.(2010)Sensorsandregulatorsof motorprogram.Am.J.Physiol.CellPhysiol.294,C333–C344 intracellularpH.Nat.Rev.Mol.CellBiol.11,50–61 26. Slepkov,E.R.,Rainey,J.K.,Sykes,B.D.,andFliegel,L.(2007)Structural 2. Alper,S.L.(2002)Geneticdiseasesofacid-basetransporters.Annu.Rev. and functional analysis of the Na(cid:1)/H(cid:1) exchanger. Biochem. J. 401, Physiol.64,899–923 623–633 3. Garbern,J.Y.,Neumann,M.,Trojanowski,J.Q.,Lee,V.M.,Feldman,G., 27. Denker,S.P.,andBarber,D.L.(2002)Cellmigrationrequiresbothion Norris,J.W.,Friez,M.J.,Schwartz,C.E.,Stevenson,R.,andSima,A.A. translocationandcytoskeletalanchoringbytheNa-HexchangerNHE1. (2010) A mutation affecting the sodium/proton exchanger, SLC9A6, J.CellBiol.159,1087–1096 causesmentalretardationwithtaudeposition.Brain133,1391–1402 28. Pouysségur,J.,Sardet,C.,Franchi,A.,L’Allemain,G.,andParis,S.(1984)A 4. Martínez-Zaguilán,R.,Seftor,E.A.,Seftor,R.E.,Chu,Y.W.,Gillies,R.J., specificmutationabolishingNa(cid:1)/H(cid:1)antiportactivityinhamsterfibro- andHendrix,M.J.(1996)AcidicpHenhancestheinvasivebehaviorof blastsprecludesgrowthatneutralandacidicpH.Proc.Natl.Acad.Sci. humanmelanomacells.Clin.Exp.Metastasis14,176–186 U.S.A.81,4833–4837 5. Ludwig,M.G.,Vanek,M.,Guerini,D.,Gasser,J.A.,Jones,C.E.,Junker,U., 29. Putney,L.K.,andBarber,D.L.(2003)Na-Hexchange-dependentincrease Hofstetter,H.,Wolf,R.M.,andSeuwen,K.(2003)Proton-sensingG-pro- inintracellularpHtimesG/Mentryandtransition.J.Biol.Chem.278, 2 tein-coupledreceptors.Nature425,93–98 44645–44649 6. Li,S.,Sato,S.,Yang,X.,Preisig,P.A.,andAlpern,R.J.(2004)Pyk2activa- 30. Tominaga,T.,andBarber,D.L.(1998)Na-Hexchangeactsdownstream tion is integral to acid stimulation of sodium/hydrogen exchanger 3. ofRhoAtoregulateintegrin-inducedcelladhesionandspreading.Mol. J.Clin.Invest.114,1782–1789 Biol.Cell9,2287–2303 7. Waldmann,R.,Champigny,G.,Bassilana,F.,Heurteaux,C.,andLazdun- 31. Rotin, D., and Grinstein, S. (1989) Impaired cell volume regulation in ski,M.(1997)Aproton-gatedcationchannelinvolvedinacid-sensing. Na(cid:1)-H(cid:1)exchange-deficientmutants.Am.J.Physiol.257,C1158–C1165 Nature386,173–177 32. Rotin,D.,Steele-Norwood,D.,Grinstein,S.,andTannock,I.(1989)Re- 8. Ishii,S.,Kihara,Y.,andShimizu,T.(2005)IdentificationofTcelldeath- quirementoftheNa(cid:1)/H(cid:1)exchangerfortumorgrowth.CancerRes.49, associatedgene8(TDAG8)asanovelacidsensingG-protein-coupled 205–211 receptor.J.Biol.Chem.280,9083–9087 33. Sardet,C.,Franchi,A.,andPouysségur,J.(1989)Molecularcloning,pri- 9. Tomura,H.,Mogi,C.,Sato,K.,andOkajima,F.(2005)Proton-sensingand marystructure,andexpressionofthehumangrowthfactor-activatable lysolipid-sensitive G-protein-coupled receptors: a novel type of multi- Na(cid:1)/H(cid:1)antiporter.Cell56,271–280 functionalreceptors.Cell.Signal.17,1466–1476 34. Orlowski,J.,Kandasamy,R.A.,andShull,G.E.(1992)Molecularcloning 10. Wemmie,J.A.,Price,M.P.,andWelsh,M.J.(2006)Acid-sensingion ofputativemembersoftheNa/Hexchangergenefamily.cDNAcloning, channels:advances,questionsandtherapeuticopportunities.TrendsNeu- deducedaminoacidsequence,andmRNAtissueexpressionoftherat rosci.29,578–586 Na/H exchanger NHE-1 and two structurally related proteins. J. Biol. 11. Dray, A. (1995) Inflammatory mediators of pain. Br. J. Anaesth. 75, Chem.267,9331–9339 125–131 35. Wang,Z.,Orlowski,J.,andShull,G.E.(1993)Primarystructureandfunc- 12. Issberner, U., Reeh, P. W., and Steen, K. H. (1996) Pain due to tissue tionalexpressionofanovelgastrointestinalisoformoftheratNa/Hex- acidosis:amechanismforinflammatoryandischemicmyalgia?Neurosci. changer.J.Biol.Chem.268,11925–11928 Lett.208,191–194 36. Numata,M.,Petrecca,K.,Lake,N.,andOrlowski,J.(1998)Identification 13. Cobbe,S.M.,andPoole-Wilson,P.A.(1980)Thetimeofonsetandsever- ofamitochondrialNa(cid:1)/H(cid:1)exchanger.J.Biol.Chem.273,6951–6959 ityofacidosisinmyocardialischaemia.J.Mol.Cell.Cardiol.12,745–760 37. Attaphitaya,S.,Park,K.,andMelvin,J.E.(1999)Molecularcloningand 14. Chesler,M.,andKaila,K.(1992)ModulationofpHbyneuronalactivity. functional expression of a rat Na(cid:1)/H(cid:1) exchanger (NHE5) highly ex- TrendsNeurosci.15,396–402 pressedinbrain.J.Biol.Chem.274,4383–4388 15. Krishtal,O.A.,Osipchuk,Y.V.,Shelest,T.N.,andSmirnoff,S.V.(1987) 38. Baird,N.R.,Orlowski,J.,Szabó,E.Z.,Zaun,H.C.,Schultheis,P.J.,Menon, RapidextracellularpHtransientsrelatedtosynaptictransmissioninrat A.G.,andShull,G.E.(1999)Molecularcloning,genomicorganization, hippocampalslices.BrainRes.436,352–356 andfunctionalexpressionofNa(cid:1)/H(cid:1)exchangerisoform5(NHE5)from 16. Vessey,J.P.,Stratis,A.K.,Daniels,B.A.,DaSilva,N.,Jonz,M.G.,Lalonde, humanbrain.J.Biol.Chem.274,4377–4382 M.R.,Baldridge,W.H.,andBarnes,S.(2005)Proton-mediatedfeedback 39. Goyal,S.,VandenHeuvel,G.,andAronson,P.S.(2003)Renalexpression inhibitionofpresynapticcalciumchannelsattheconephotoreceptorsyn- ofnovelNa(cid:1)/H(cid:1)exchangerisoformNHE8.Am.J.Physiol.RenalPhysiol. 5894 JOURNALOFBIOLOGICALCDHoEwMnIlSoTaRdYed from http://www.jbc.org/ at University of Rochester on JuVnOe L1U7M, 2E012388•NUMBER8•FEBRUARY22,2013

Description:
4,5-bisphosphate binding, protein kinase C- and calmodulin- dependent .. extended this analysis to include strains expressing the chime- . worms treated with cmd-1 RNAi for several days died (data not shown). tional expression of a novel gastrointestinal isoform of the rat Na/H ex- changer.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.