ebook img

Ancillary Services from Thermostatic Loads PDF

24 Pages·2013·3.77 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ancillary Services from Thermostatic Loads

Thermostatic Loads for Ancillary Services CDC Workshop: “Ancillary services from flexible loads to help the electric grid of the future,” 9 Dec 2013, Florence, Italy Collaborators: Dr. Johanna Mathieu •  Duncan Callaway (UCB) •  Mark Dyson (UCB) PostDoc •  Stephan Koch (ETH) Power Systems Laboratory •  Maryam Kamgarpour (ETH) ETH Zürich, Switzerland •  John Lygeros (ETH) •  Göran Andersson (ETH) eeh power systems J. Mathieu | 12/9/13 | 1 laboratory What are thermostatically controlled loads (TCLs)? o  Refrigerators, water heaters, air conditioners, electric space heaters, etc. o  ON/OFF control within dead-band TCLs" o  TCLs store thermal energy in temperature dead- bands like batteries store chemical energy eeh power systems J. Mathieu | 12/9/13 | 2 laboratory A TCL’s temperature dead-band 3 ON e at 4 2 t s OFF 1 θ - δ/2 θ θ + δ/2 set set set temperature 3 kW 2 4 1 time eeh power systems J. Mathieu | 12/9/13 | 3 laboratory Non-disruptive control via ON/OFF switching 3 ON 3 e at 4 4 2 2 t s 1 OFF 1 θ - δ/2 θ θ + δ/2 set set set temperature 3 3 kW kW 2 4 2 4 1 1 time eeh power systems J. Mathieu | 12/9/13 | 4 laboratory Temperature set point control 3 3 ON 4 e at 4 2 2 t s OFF 1 1 θset - δ/2 θset - δθ/s2et θθseste +t δ/2 θset + δ/2 temperature 3 3 kW kW 2 4 2 4 1 1 eeh power systems J. Mathieu | 12/9/13 | 5 laboratory Why do we care about such small loads?   More reliable than single large resources in aggregate   Spatially-distributed  can address local problems   Simple local controllers  Easier to get them to do what you want   Continuous, not discrete, control responses in aggregate eeh power systems J. Mathieu | 12/9/13 | 6 laboratory IEEE TRANSACTIONS ON POWER SYSTEMS 1 State EstimIEEEaTRtANiSoACTnIONSaONnPOdWER SCYSToEMSntrol of Electric Loads to 1 IEEE TRANSACTIONS ON POWER SYSTEMS 1 IEEE TRANSACTIONS ON POWER SYSTEMS Manage Real-Time Energy Imbalance 1 State Estimation and Control of Electric Loads to State Estimation and Control of Electric Loads to IEEE TRANSACTIONS ON POWER SYSTEMS 1 Johanna L. Mathieu, StudMent Maemnbaer,gIEeEE,RSteephaanlK-oTch,iSmtudeent MEemnbeer,rIEgEEy, Imbalance Manage Real-Time Energy Imbalance State Estimation and Control of DuEncanlS.eCalclawtay,rMiemcber, IELEE oads to State Estimation and Control of ElectrJoihacnna LL. Maothieau, Sdtudsent Mtemober, IEEE, Stephan Koch, Student Member, IEEE, Johanna L. Mathieu, Student Member, IEEE, Stephan Koch, Student Member, IEEE, Duncan S. Callaway, Member, IEEE Duncan S. Callaway, Member, IEEE Manage Real-Time Energy Imbalance Manage Real-Time Energy Imbalance Modeling individual TCLs 0, θ < θ −δ /2 i,t+1 set,i i  Parameter Meaning mi,t+1 = 1, Vθia,t+l1u>eθset,i +δi/2 (1) m , otherwise θset Each TCJLoh, aitnJ,e oncmahaaLpnn.e nrbMaaeatL utmh.rieeoMuds,aeeStthtlpeuiodedeiu nnw,ttSiMtthue dmebnetr,MIEeEmOENb ,eSrt,eIpEhaEnEK, oScth1ie,t,5pS-h2tau5nd◦eCKn0to,Mche,mθSb0,teur<,dθIeθEin,tE+−t1EδM<,/θ2esetm,i −bδei/r2, IEEE, δ a stochasticd heaydb-rbida nddiffweirdetnhcDeu necqaunDaSt.uionCncaal:l nawSastate .y,CMaellmawbear,y,IEME0eE.2mm5i,tb-+11e◦=r,CmI1iE,,t+E1 =Eθii,,ttm1++,11 >, θssθoeettit,,,hiite++r1wδ>iiis/eθ2set,i +δi(/12) (1) i,t θ ambient temperature OFF θset +δ/2 32◦Cmi,t, otherwise a  R ◦ thermal resistance 1.5-2.5 C/kW temperature θ −δ/2 θ +δ/2 C Temperature of tthhee srpmacael capacitance set 8-1θ2+kδW/2 hset/◦C set − − P θ (k + 1) = a θ (k) + (1 a )(θ m (k)θ ) + " (k) i i i rated poiwe−ra,i i −g,i i 10-18 kW rate θ (k + 1) = a θ (k) + (1 a )(θ m (k)θ ) + " (k) θ −δ/2 i i i i a,i i g,i i set θ −δ/2 set On/off state a, thermal parameter θ , temperature gain g − 0, θ (k + 1) < θ δ /2 θ , ambient temperature i set,i i  − − a θ = a θ + (1 a )(θ m θ −) + " (1) mii(,kt++11) = i1,i,t0, θi(k +iθ1i)(>ka+θ,siet1,i)+<δiθi/,s2tet,ig,i δi/2 i, ,ntoise θ , set point m (k + 1)m= (k)1,, otherwiθse(k + 1) > θ + δ /2 set i i  i set,i i  δ, dead-band width  m (k), otherwise i  [Ihara & Schweppe 1981, Mortensen & Haggerty 1990, Uçak & Çağlar 1998] x Ax Bu B ω (k + 1) = (k) + (k) + (k) (2) ω eeh power systems J. Mathieu | 12/9/13 | 7 θ + δ/lab2oratory set Cx y(k) = (k) + ν(k) (3) θ + δ/2 set − θ δ/2 set 1 0   θ − δ/2 . set . −. u (k) = u (Bk) = K(P (k+1) P (k+1)) goal j j = desired predicted (4) % ω    0 1  J.L. Mathieu is with the Department of Mechanical Engineering at the   − − − University of California at Berkeley, 4th Floor Collaboratory, Sutardja Dai u (k) = u (k)−= K(1P ...(k +11) P (Hkall,+Berk1el)ey), CA 94720-1740 USA (email: [email protected]). S(k +goa1l) = S(k) +j (Pj(k) P d(eksir)e)d∆T predicted % baseline S. Koch is with the Power Systems Laboratory at ETH Zu¨rich, ETL G 29, Physikstrasse 3, 8092 Zu¨rich (email: [email protected]). − D.S. Callaway is with the EnergyJ.aLn.dMRaetshoiueurceiss Gwriothupthaet tDheepUarntimveernstityof Mechanical Engineering at the P (k + 1) P (k + 1)of California at BerkeleJ.yL,.31M0aBthaireUruonwiivsserHwsiaittlyhl,oBtfheerCkaDellieefypo,arrnCtimAaea9nt4t7Bo2ef0r-kM3e0le5ecy0h,aU4nStihcAalFlEoonrgiCneoellrainbgoraattortyh,eSutardja Dai set total,est u (k) = K (email: d,[email protected])s.ity ofHCalall,ifBorenrkiael(eayt5,BC)eArke9l4e7y,204-t1h74F0loUorSACo(lelambaoirla:tojmrya,[email protected]). P S((kkg)o+!alP1)(k=) !S(Pk) +(k()P(k)N− P P¯ (k))∆T J.L. Mathieu andHaDll.,SB. eCrkaelllaewy,aSCy.AKac9ok4cnh7o2wi0sl-ew1d7igt4he0thUfienSaPAnocw(iaeelmrasSiuly:[email protected]). Zu¨rich, ETL G 29, min max TCbLaselirnaete, ON PSERC’s Future Grid ISn.itKiaoticvhe,isaPnwdhiytShs.iktKhsetorcaPhsosweace3kr,nSo8wy0s9lte2edmgZseu¨srLificahnbao(nreacmtioaalriyls:uakptopEcoThrt@HeZeuh¨r.eiceh.e,tEhzT.cLh)G. 29, from swisselectric rePsheyasrickhstfroarsstehe3,pDr8.o0Sj9e.2cCtZaLlu¨loarcwiacahlyL(eoismadwaiMli:[email protected])o.urces Group at the University D.S. CallawofayCaislifworitnhiathaet BEenrekreglyeya,n3d10ReBsaorurrocwess HGarollu,pBeartktehleeyU, CniAver9s4it7y20-3050 USA of California(aetmBaeilr:kedlceayl,@3b1e0rkBealerryo.ewdsu)H.all, Berkeley, CA 94720-3050 USA (email: [email protected])e.u and D.S. Callaway acknowledge financial support from S (k) ! S(k) ! S (k) J.L. MathiPeuSEaRnCd’sDF.uSt.urCeaGllraiwdaIynitiaactkivneo,walneddgSe. Kfioncahncaiaclknsouwplpeodrgtesfrfionmancial support miPn (k) ! P(k)ma!x P (k) min max PSERC’s FutufrroemGsriwdisIsneitlieacttirviec,raensdeaSr.chKfoocrhtahcekpnroowjelecdtgLeoscafilnaLnocaidalMsuapnpaogretment. from swisselectric research for the project Local Load Management. S (k) ! S(k) ! S (k) min max J.L. Mathieu is with the Department of Mechanical Engineering at the University of California at Berkeley, 4th Floor Collaboratory, Sutardja Dai Hall, Berkeley, CA 94720-1740 USA (email: [email protected]). S. Koch is with the Power Systems Laboratory at ETH Zu¨rich, ETL G 29, Physikstrasse 3, 8092 Zu¨rich (email: [email protected]). D.S. Callaway is with the Energy and Resources Group at the University of California at Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 USA (email: [email protected]). J.L. Mathieu is with the Department of Mechanical Engineering at the J.L. Mathieu and D.S. Callaway acknowledge financial support from University of California at Berkeley, 4th Floor Collaboratory, Sutardja Dai PSERC’s Future Grid Initiative, and S. Koch acknowledges financial support Hall, Berkeley, CA 94720-1740 USA (email: [email protected]). from swisselectric research for the project Local Load Management. S. Koch is with the Power Systems Laboratory at ETH Zu¨rich, ETL G 29, Physikstrasse 3, 8092 Zu¨rich (email: [email protected]). D.S. Callaway is with the Energy and Resources Group at the University of California at Berkeley, 310 Barrows Hall, Berkeley, CA 94720-3050 USA (email: [email protected]). J.L. Mathieu and D.S. Callaway acknowledge financial support from PSERC’s Future Grid Initiative, and S. Koch acknowledges financial support from swisselectric research for the project Local Load Management. 1 Many other individual TCL models   Equivalent Thermal Parameter (ETP) model   [e.g., Zhang et al., IEEE Trans Pwr Sys 2013]   Captures dynamics between the mass and air temperatures   Multi-state load models   [Schneider et al. IEEE Trans Pwr Sys 2011]   Load-specific models   Two-layer electric water heaters + water draw models [Kondoh et al. IEEE Trans Pwr Sys 2011]   Thermally stratified electric water heaters + water draw models [Vrettos et al. ISGT Europe 2012] eeh power systems J. Mathieu | 12/9/13 | 8 laboratory Controlling individual loads   Price response considering thermal comfort   [e.g., Thomas et al., IEEE Trans Smart Grid 2012], Stochastic dynamic programming at individual thermostats   Hierarchical control of an aggregation   [Mariethoz & Morari, ACC 2012]   Model hybrid systems with a mixed logical dynamics (MLD) framework   Solve MILPs at each bottom-level aggregator eeh power systems J. Mathieu | 12/9/13 | 9 laboratory Controlling aggregations of loads   Individual TCL models are hard to work with when trying to design controllers for large numbers of loads.   Key research areas:   Aggregate load modeling   Parameter identification methods   Control methods   State estimation methods   Goal: Controlling an aggregation of loads without ‘breaking the bank’ and with consumer acceptance.   Challenges: hybrid dynamics, heterogeneity, stochasticity eeh power systems J. Mathieu | 12/9/13 | 10 laboratory

Description:
CDC Workshop: “Ancillary services from flexible loads to help the electric grid of o TCLs store thermal energy in temperature dead- . broadcast%.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.