OrnisFennica93:12–25.2016 Seeking explanations for recent changes in abundance Anas penelope of wintering Eurasian Wigeon ( ) in northwest Europe Anthony D. Fox*, Lars Dalby, Thomas Kjær Christensen, Szabolcs Nagy, Thorsten J.S. Balsby, Olivia Crowe, Preben Clausen, Bernard Deceuninck, Koen Devos, Chas A. Holt, Menno Hornman, Verena Keller, Tom Langendoen, Aleksi Lehikoinen, Svein-Håkon Lorentsen, Blas Molina, Leif Nilsson, Antra St(cid:1)pniece, Jens-ChristianSvenning & Johannes Wahl A.D.Fox,L.Dalby,T.K.Christensen,T.J.S.Balsby&P.Clausen,DepartmentofBiosci- ence,AarhusUniversity,Kalø,Grenåvej14,DK-8410Rønde,Denmark.*Correspond- ingauthor’se-mail:[email protected] S.Nagy&T.Langendoen,WetlandsInternational,Horapark9,Ede6717LZ,TheNeth- erlands O. Crowe, BirdWatch Ireland, Unit 20 Block D Bullford Business Campus, Kilcoole, CountyWicklowIreland B.Deceuninck,LPO-BirdLifeFrance,FonderiesRoyales,8rueduDrPujos,BP90263, RochefortCedexF-17305,France K.Devos,ResearchInstituteforNatureandForest,Kliniekstraat25,1070Brussel,Bel- gium C.Holt,BritishTrustforOrnithology,TheNunnery,Thetford,NorfolkIP242PU,UK M.Hornman,SovonDutchCentreforFieldOrnithology,P.O.Box6521,Nijmegen6503 GA,TheNetherlands V.Keller,SwissOrnithologicalInstitute,Sempach,CH-6204,Switzerland A.Lehikoinen,TheHelsinkiLabofOrnithology,FinnishMuseumofNaturalHistory,P.O. Box17,UniversityofHelsinki,Helsinki,Finland S.-H.Lorentsen,NorwegianInstituteforNatureResearch,7485Trondheim,Norway B. Molina, Bird Monitoring Unit, SEO BirdLife, C/ Melquíades Biencinto,34-28053 Madrid,Spain L.Nilsson,DepartmentofBiology,UniversityofLund,EcologyBuilding,Lund,S-223 62,Sweden A.St(cid:1)pn(cid:2)ece,InstituteofBiology,UniversityofLatvia,MieraStreet3,LV-2169Salaspils, Latvia J.-C. Svenning, Section for Ecoinformatics &Biodiversity, Department of Bioscience, AarhusUniversity,NyMunkegade114,DK-8000AarhusC,Denmark J. Wahl, Dachverband Deutscher Avifaunisten e.V. (DDA), Federation of German Avifaunists,AndenSpeichern6,D-48157Münster,Germany Received6June2015,accepted3October2015 CommunicatedbyMarkusÖst Foxetal.:ChangingwinteringWigeonabundanceinnorthwestEurope 13 WeanalysedannualchangesinabundanceofEurasianWigeon(Anaspenelope)derived frommid-winterInternationalWaterbirdCensusdatathroughoutitsnorthwestEuropean flywaysince1988usinglog-linearPoissonregressionmodelling.Increasesinabundance inthenorthandeastofthewinteringrange(Norway,Sweden,Denmark,Germany,Swit- zerland),stablenumbersinthecentralrange(Belgium,Netherlands,UKandFrance)and decliningabundanceinthewestandsouthofthewinteringrange(SpainandIreland)sug- gestashiftinwinteringdistributionconsistentwithmilderwintersthroughouttherange. However,becauseover75%ofthepopulationofover1millionindividualswintersin Belgium,theNetherlands,UKandFrance,therewasnoevidenceforamajormovement inthecentreofgravityofthewinteringdistribution.Between-winterchangesinoverall flywayabundancewerehighlysignificantlypositivelycorrelated(P=0.003)withrepro- ductivesuccessmeasuredbyageratiosinDanishhunterwingsurveysandlessstrongly andinverselycorrelated(P=0.05)withmeanJanuarytemperaturesinthecentreofthe winteringrange,suggestingthatwinterseveritymayalsocontributetoinfluencesurvival. However,addingwinterseveritytoamodelpredictingpopulationsizebasedonannual reproductivesuccessalonedidnotcontributetomoreeffectivelymodellingtheobserved changes in population size. Patterns in annual reproductive success seem therefore to largelyexplaintherecentdynamicsinpopulationsizeofnorthwestEuropeanWigeon. SummerNAOsignificantlyandpositivelyexplained27%ofvarianceinannualbreeding success.Otherlocalfactorssuchaseutrophicationofbreedingsitesandchangesinpreda- tionpressureundoubtedlycontributetochangesintheannualproductionofyoungand differences in hunting pressure as well as winter severity affect annual survival rates. However,itseemslikelythattheobservedflywaypopulationtrendsince1988hasbeen mostlyinfluencedbyclimateeffectsonthebreedinggroundsaffectingreproductivesuc- cessandmarginallyonthewinterquartersaffectingsurvival.Weurgeimproveddemo- graphicmonitoringofthepopulationtobetterassessannualsurvivalandreproductive success.Wealsorecommenddevelopmentofanadaptivemanagementframeworktore- moveuncertaintiesinourknowledgeofWigeonpopulationdynamicsasinformationis forthcomingtobetterinformmanagement,especiallytoattempttoharmonisetheharvest withannualchangesindemographytoensuresustainableexploitationofthisimportant quarryspeciesnowandinthefuture. 1.Introduction nationasRamsarwetlandsitesofinternationalim- portance,butlatterlyascohesivenetworksofNa- SincetheendoftheSecondWorldWar,manyof tura2000sitesestablishedalongtheirflyways.As thehuntableduckspeciesofnorthwesternEurope viewed from the perspective of the late 1990s haveshownsustainedincreasesinabundance(e.g. therefore, the favourable conservation status of Eltringham&Atkinson-Willes1961,Owenetal. mosthuntabledabblingduckspeciesrepresenteda 1986,Nagyetal.2014).Thishaspresumablybeen majorconservationsuccessstoryinnorthwestEu- atleastpartiallytheresultofmorerestrictivehunt- rope,balancingincreasinglyabundantpopulations inglegislationthathasreduceduncontrolledhar- withaharvestableofftakethatwasacknowledged vestofsuchpopulations(Berry1939,Owenetal. torepresentgenuinely“sustainableuse”withina 1986). In addition, the results of site protection timeframeofdecades. havepresumablyalsoreducedtherateofhabitat Unfortunately,thereareincreasinglysignsof loss and degradation for these duck species, ini- contemporarychangeinthissituation,asthepro- tiallyintheformoflocalandnationalnaturere- ductionofyoungamongstEurasianWigeon(Anas servesandinternationalprotection,suchasdesig- penelope, hereafter Wigeon), Northern Pintail 14 ORNISFENNICAVol.93,2016 (Anasacuta)andNorthernShoveler(Anasclype- wetlands in Finland and Russia, avoiding detec- ata)inthisflywayhasfallenconsistentlyoverthe tionbyoccurringinareasnotcurrentlysubjectto last30years(assampledbyhunters,Christensen mid-winterIWCcoverage(becausetheywerefor- &Fox2014)andtheirmajorEUbreedingaggre- merly frozen in winter). The omission of such gationswithinFinlandareshowingrecentdeclines birdsfromthecountnetworkthroughwinterfull- in abundance (Pöysä et al. 2013). Between-year orpartialshort-stopping(i.e.birdsoverwintering changesinabundanceofseveralspecieslistedon in areas closer to breeding areas as a result of Annex II of the EU Birds Directive (i.e. those milderwinters,inthiscasetothenorthandeastof whichmaybehunted)arenowshowingsignsof their former wintering range, see Elmberg et al. stabilisationanddeclineattheflywaylevel(Nagy 2014 for precise definitions) could contribute to et al. 2014, Ramão 2015). Although there is no the perception that there have been declines in doubtthatthepopulationabundanceofthesespe- overallannualabundanceinrecentyears.Forthis ciescontinuestobewellabovethoseofthe1950s, reason, we use IWC data to look for signs of thecontemporarydeclinespresentachallengeto changesinthewinteringdistributionofWigeonto their effective management and sustainable har- testthishypothesis. vest.Attheveryleast,agreaterunderstandingof It is known from detailed studies at a single thesedeclinesisrequiredifwearetobeinaposi- majorWigeonbreedingresort(MývatninIceland) tiontobeabletoimplementmanagementactions thatthesizeofthebreedingWigeonpopulationin to inhibit and reverse them. For this reason, it is year t is highly correlated to the production of helpfultoinvestigatethenatureofrecentchanges youngatthesamesiteinyeart–1(Gardarsson& inoverallabundanceofthesespeciesandtolook Einarsson1994).Hence,itmightbeexpectedthat, forsupportforvarioushypothesesthatwecould iftherecruitmentoffirstwinterbirdstothesubse- putforwardfortheirdeclines. quent breeding class makes such a difference to Inthisanalysis,welookindetailattheabun- overallbreedingnumbers,thevariationsinrepro- danceofwinteringWigeoninnorthwestEuropeto ductivesuccessattheflywaylevelmaycontribute assessthedegreeofitsrecentdeclineandattempt tooverallabundanceinwinter.Wethereforetestto toaccountforitsdownturn.Wedothisbyexamin- seeifthisisthecaseusingacombinationofwing ing data from the mid-January International samplessubmittedbyDanishhunterstomeasure WaterbirdCensus(IWC)gatheredbynationalor- annualreproductivesuccessandIWCdataonan- ganisationsthroughouttheWesternPalearcticand nualchangesinoverallpopulationsize.Giventhe centrallycollatedbyWetlandsInternational(WI). earlierfindingthatWigeonbreedingsuccessisin- WeconsiderthatthenorthwestEuropeanWigeon fluenced bysummer temperature (Mitchell et al. population is relatively closed in winter because 2008),wealsolookforcorrelationsbetweensum- long term ringing recovery data has established merNorthAtlanticOscillation(NAO)indicesand thatbirdsdonotcontinueintonorthandwestern reproductiveoutputtoaccountforrecentdeclines Africa in winter (e.g. Donker 1959, Owen & inproductivityinthisflyway(Christensen&Fox Mitchell1988,Saurolaetal.2013).Forthisrea- 2014). son,weassumethatthecontemporarycountnet- Wealsocheckforsignsofdensitydependence workinnorthwestEuropeiseffectiveatcovering in reproductive output to see if the increase in theentirepopulationandthatchangesintheesti- Wigeonpopulationsizehasalsocontributedtothe matedyear-on-yearabundancecanonlyarisefrom decline.Finally,becauserecoveriesofWigeonare differences in count coverage, reproductive suc- greater during spells of hard winter weather cessandsurvival.Recentanalysishasshownthat (Ridgill&Fox1990),wetesttofindsupportfor several diving duck species have extended their thehypothesisthatcoldwintersinnorthwestEu- northwest European wintering range north and ropecouldcontributetoexplainingdeclinesinthe eastwithamelioratingwintertemperatures(Lehi- overallpopulationsizeinthefollowingyearsus- koinen etal. 2013, Pavón-Jordan etal. 2015). If ingIWCdatabyregressingannualchangeinpo- thisisthecasefortheWigeon,therecouldpoten- pulationsizeagainstmeanJanuarytemperaturein tiallybelargenumbersofthisspeciesoccurringin thecentreofthewinteringrange. Foxetal.:ChangingwinteringWigeonabundanceinnorthwestEurope 15 Fig.1.Mapshowing thegradientofvalues establishedfromSWto NEusedaspredictor totestthehypothesis thattrendsinnumbers amongEuropeandab- blingduckstendtoin- creasetowardsthe NE. 2.Methods generatedinTRIM(actualcountsorinthecaseof missingvalues,imputedcounts).Spatialcoverage 2.1.Short-stopping in IWC is biased towards certain countries with very dense counting schemes (e.g. United King- Weusedmid-JanuarycountdataforWigeonfrom domandtheNetherlands)andtocompensatefor theIWC(Gilissenetal.2002,Nagyetal.2014) theunevendistributionofsitesweaggregatedthe between1990and2009fromcountrieswithinthe sitebasedvaluestoa1°by1°gridtakingthemean north-west European flyway (sensu Atkinson- Tauvalueforallsitesfallingwithinagridcellus- Willes1976).Inallcountries,onlysitescountedat ingthe“raster”package(Hijmans2013)inR3.0.1 least twice entered the analysis. We fitted trends (R Core Team2013). This resulted in a mean of foreachcountryusingthesoftwareTRIMversion 9.38 sites per grid square (range 1–77) based on 3.54 (Van Strien et al. 2004, Pannekoek & van 2,888siteswithWigeoncountdatathroughoutthe Strien2005)imputingmissingcountsandestimat- region. ing trends by log-linear Poisson regression. To Totestiftherewasatendencyforgridcellslo- standardisecomparisonsoftrendsandtherelative cated further to thenortheast(closer to thebree- magnitude of trends, we indexed the counts to a ding grounds) to show increasing numbers (i.e. valueofunitystartingin1990forallnationalanal- positiveTauvalues),wefittedageneralisedaddi- yses. tive model (GAM) using the “mgcv” package ToestimatesitetrendswecalculatedKendall’s (Wood2006)withtheTauvaluesasresponsevari- Tauonlog-transformedcountsusingthedataset ableandagradientfromsouthwesttonortheastas 16 ORNISFENNICAVol.93,2016 explanatoryvariable.WedefinedtheSW–NEgra- 2.4.Effectsofwinterweather dientasthelatitudeandlongitudeofthestudyre- onbetweenyearchangesinabundance gionscaledfromzerotooneandsummed,givinga vectorfromzero(SW)totwo(NE,seeFig.1and To testfor supportfor the hypothesis thatsevere Dalby2013). weatheronthewinterquartersaffectssurvival,we Toassesswhetherchangesinthedistribution also tested for a correlation between the propor- ofWigeonduring1990–2009hadresultedinsys- tionalchangeinwinterpopulationbetweenyeart tematicmovementintheannualcentresofgravity and t + 1 and the mean January temperature at of abundance in wintering distributions towards Schiphol Airport (52.3°N 4.76°E) in the Nether- thenorthandeastduringthetimeseries,weesti- lands where most (40–45%) of the population mated the annual and decadal centres of abun- overwinters (data from http://www.tutiempo.net/ dance as the weighted mean longitude and clima/Amsterdam_Airport_Schiphol/62400.htm). weightedmeanlatitudeusingthecountsestimated Thismeteorologicalstation also lieswithin 150– fromTRIMasweights. 200 km of the decadal centre of gravities of the Finally,weplottednationalTRIMindicesfor winteringpopulation(seeFig.4). mid-wintercountsfromcountriesalongtheentire flywaytotestthepredictionundertheshortstop- 2.5.Predictingbetweenyearchanges ping hypothesis that Wigeon wintering in the inabundancebasedonreproductive northeast part of the winter distribution should successandwinterweather showgreatestincreasesandincountriesprogres- sively south and west along the flyway would Inthecourseofthisanalysis,weshowedastrong showdeceasingtrendsasbirdsrelocatednearerto linear relationship between the proportional thebreedingareasinmid-winter. changeinflywaypopulationabundanceinyeart (P)comparedtoyeart–1(P )andtheratioof t t–1 young to adults in the wing surveys (w ) pro- t–1 2.2.Flywaytrends videdbyhuntersinDenmark(Fig.7).Totesthow wellvariation in breeding success contributed to changesinyear-to-yearabundance,wegenerated ATRIMmodelwasalsofittedtotheentiredataset anindependenttimeseriesofannualestimatesof fromallcountriestogenerateaflywayindexofto- theWigeonflywaypopulationsize(P)inyeartus- tal estimated individuals for the period 1988 to ing the regression modelled proportional change 2012 using the methods described and estimates inpopulationsizepredictedbyreproductivesuc- generatedbyNagyetal.(2014). cessinthepreviousyearthus: P =P (aw –b) (1) 2.3.Effectsofannualreproductivesuccess t t–1 t–1 onbetweenyearchangesinabundance where P is the northwest European population t sizeintheJanuaryofyeart,w istheageratioin t–1 Age ratios from the Danish hunter wing survey thehunterwingsurveysbasedonbirdshatchedin (Christensen&Fox2014)wereusedasameasure summert–1andaandbareconstants(seetheac- ofannualproductionofyounginthispopulation tualformulainFig.7).Thetimeseriespresentedin forthesameperiod,sincethesearethoughttopro- Fig.8wasgeneratedstartingwiththeknownP t–1 videareasonablemeasureofannualproductionof in 1988 (777,343 individuals from Nagy et al. younginthenorthwestEuropeanpopulation(Fox 2014)togenerateP for1989andeachsubsequent t etal.2015,Foxetal.2016).Theratiooffirstwin- P estimatedinthesameway. t terbirdstoadultfemalesinthewingsampleswere We also took the same relationship from the usedasameasureofrelativeannualbreedingout- Schiphol airport mean January model and incor- puttoinvestigatethehypothesisthatthepopula- porated this into a multiple regression model to tion in agiven winter washeavilyinfluenced by generateanothertimeseriescombiningthemod- thereproductivesuccessintheprevioussummer. elledeffectsofbreedingsuccessandJanuarywin- Foxetal.:ChangingwinteringWigeonabundanceinnorthwestEurope 17 Fig.2.MeanannualnumberofWigeoncounted Fig.3.Generalisedadditivemodel(GAM)ofKend- from1990to2009aggregatedinto1°by1°grid all’sTauonlog-transformedWigeoncountsfrom squaresbyaddingcountsfromallsitesfallingwith- theInternationalWaterbirdCensusfromacrossEu- ineachgridcell.CountsoriginatefromtheInterna- ropebetween1990and2009againstagradient tionalWaterbirdCensusfromallEuropeancoun- fromthesouthwesterncorner(0)tothenortheast- triesplottedhere.Missingcountswereimputedus- ernmostcorner(2)oftheNorthwestEuropeanfly- ingTRIMversion3.54(Pannekoek&vanStrien way(sensuAtkinson-Willes1976andseeDalby 2005)beforecalculatingmeangridcellvalues. 2013).SitebasedKendall’sTauvalueswereaggre- NotedataarenotshownforIrelandorPortugalbe- gatedto1°by1°gridsquaresbytakingthemean causefulldatafor1990–2009werenotavailable ofallsiteKandall’sTauvaluesbeforerunningthe fromtheseschemessogriddedmeanswouldnot analysis.Estimatesareshowninwhitewith95% becomparablewiththerestofEurope. confidenceintervals(shadedgreyarea). terseverity.Wetestedgoodnessoffitofpredicted successofseveralbirdspecieshasbeenshownto populationsizegeneratedfromthetwomodelsby be influenced by NAO (e.g. Forchhammer et al. fitting general linear models to the annual pre- 1998,2002,Hüppop&Hüppop2003).Sinceposi- dicted population size and those generated from tiveNAOindicescharacterisethemorenortherly count data, with the expectation that the best trackingofthejet-streamandstormtracksinthe model would have the slope closest to unity and North Atlantic, such conditions bring warmer, we compared slopes using procedure of Zar drier, cloudless conditions to central Eurasia (1999).Wealsotestedforsignsofdensitydepend- whereWigeonbreed(Follandetal.2009),likely enceinthetimeseriesbyseekinganinverserela- enhancingbreedingsuccessinsuchyears;incon- tionshipbetweenbreedingsuccessinyeartandln trastnegativeindicesreflectcolder,wettercondi- transformedpopulationsizeinJanuaryoft–1. tionsonthebreedingareasandwouldthusbeex- Finally, to testwhether breeding successwas pected to be associated with poor Wigeon bree- linked with climatic conditions on the breeding dingsuccess. grounds(asalsoconfirmedforWigeonintheIce- land population, Gardarsson & Einarsson 1997) 3.Results we used the combined May–July North Atlantic Oscillation index (National Oceanic and Atmo- 3.1.Short-stopping sphericAdministration2015)totestforacorrela- tion between this summer NAO index and bree- Wigeonarehighlyconcentratedinmid-winterin ding success as measured in the Danish hunter northwestEurope,with40–45%ofthewintering wing surveys. The phenology and reproductive birdsinthisflywayoccurringintheNetherlands, 18 ORNISFENNICAVol.93,2016 centdeclines(Fig.5)anddeclinesatthewestern endoftheflyway(significantdecreasesinIreland andSpain). 3.2.Flywaytrend Followingincreasesinabundanceduringthelate 1980sand1990s,Wigeonnumbershavestabilised inthenorthwestEuropeflywayanddeclinedsince themid-2000s(Fig.6a).Annualreproductivesuc- cessasmeasuredbytheratioofjuvenilestoadult femalessampledfromshotbirdsinDenmarkhave fluctuated since 1988, but were generally below averageduring8ofthe11yearsduring2002–2012 (Fig.6b). 3.3.Effectsofannualreproductivesuccess Fig.4.CountweightedmeancentroidsofWigeon onbetweenyearchangesinabundance countsfromtheInternationalWaterbirdCensus acrossEuropeforeachyearbetween1990and Theproportionalchangeinsuccessivewinterpo- 2009.Blacktrianglesareshowingthedecadal pulationestimateswaspositivelyandsignificantly weightedmeancentroid.Missingcountswereim- putedusingTRIMversion3.54(Pannekoek&van correlatedwiththeannualratioofyoungtoadults Strien2005)beforecalculatingtheweightedcen- intheDanishhunterwingsurveyintheprevious troids.Thesoliddiamondindicatesthelocationof yearduring1988–2012(r2=0.34,F =11.4,P= themeteorologicalstationatSchipholAirportused 1,22 0.003,Fig.7).Theannualratioofyoungtoadult toprovidemeanJanuarytemperaturesusedinthis WigeonintheDanishhunterwingsurveyshowed study. a significant positive correlation with the May– 35%intheUnitedKingdomandjustunder10%in JulyNAO index for thepreceding summer, sup- Germany,6%innorthFranceand4%inBelgium portingthehypothesisthatclimateaffectsthere- (Fig.2).Thisdistributionhaschangedlittlesince productivesuccessofthispopulation(y=5.640+ Monval&Pirot(1989)andRidgill&Fox(1990), 0.510x,r2=0.27,F =9.97,P=0.01).Breeding 1,22 although the GAM analysis clearly showed that successinagivensummerwassignificantlynega- thereweresegmentsoftheWigeonflywaywhere tively correlated with ln transformed population trendsincreasedmoreonthenorthandeastofthe sizeinthepreviousJanuary(y=104.6–7.124x,r2 winter range than the south and west where de- =0.32,F =34.9,P=0.004). 1,22 clines were more evident (deviance explained = 42.8%,F =26.82,P<0.0001,Fig.3).The 3.4.Effectsofwinterweather 7213,308 weighted mean centroids varied between years onbetweenyearchangesinabundance (Fig. 4), but there was no convincing temporal trend through the years plotted here, the decadal Theproportionalchangeinwinterpopulationesti- centreofgravityforthe2000sbeing43.9kmtothe matesalsoshowedamarginallysignificantposi- NEofthatinthe1990s.Increasingnumberswin- tiverelationshipwiththemeanJanuarytempera- teringinthenortheastofthewinteringrange(sig- tureatSchiphol(r2=0.17,F =4.4,P=0.05). 1,22 nificant increases from fitted TRIM models in Sweden, Norway, Denmark, Germany and Swit- 3.5.Predictingbetweenyearchanges zerland,seeFig.5)contrastedstabletrendsinthe inabundancebasedonreproductivesuccess centre of the range (Belgium, Netherlands, the andwinterweather UnitedKingdomandFrance,wherethevastma- jorityoftheindividualsinthisflywaywinter,al- Modelling the year-on-year change in flyway thoughthesecountriesallshowsomesignsofre- abundancebasedontheoutputfromthemodelin Foxetal.:ChangingwinteringWigeonabundanceinnorthwestEurope 19 Fig.5.NationalTRIMindicesforWigeonbasedontheInternationalWaterbirdCensusdatafromselected Europeancountriesfrom1990to2009,withindicessetto1in1990.Notedifferentscalesintheindices axesbetweencountries. Fig.7showedanextremelygoodfittothetimese- estimatedaslopeof1.013(generallinearmodelr2 ries although the combined modelled effects of =0.433,F =16.89,P=0.0005).Themodelin- 1,22 this and incorporation of the relationship with corporating both reproductive success and Schiphol January temperatures worsened the fit Schiphol January temperature gave a significant (Fig.8).Themodelusingreproductivesuccessto model with a slope of 0.909 (r2 = 0.434, F = 1,22 generatepopulationsizeshowedasignificantcor- 16.90,P=0.0005).Thetwoslopeestimatesdif- relationwiththeobservedpopulationssizewithan feredsignificantly(t =5.6,P<0.001). 44 20 ORNISFENNICAVol.93,2016 Fig.6.(a)Combined annualTRIMindices withgeneratedstan- darderrorestimates (seevanRoomenetal. 2011formethods)for Wigeonfortheyears 1988–2012basedon theInternational WaterbirdCensusdata fromthenorthwestEu- ropeflywaypopulation. (b)Annualratioofju- venileWigeontoadult femalesinwingsamp- lesvoluntarilysubmit- tedbyhuntersinDen- mark,1982–2014for comparison. 4.Discussion ingnumbersinthesouthandwest(c.85,000)of the range are relatively modest compared to the During 1990–2009 there was good evidence for morethanonemillionwinteringindividualsinthe Wigeonshowingpatternsofshortstoppingintheir centralpartoftherange,whererelativeabundance winterdistributioninnorthwestEurope,withthe haschangedlittle,explainingthegenerallackof establishment and expansion of a new wintering responseinthepositionoftheannualanddecadal population in Sweden and increases in Norway, centresofgravityofthiswinteringpopulation.The Denmark,GermanyandSwitzerland,stabletrends countdatashowthatthereisnowan established inBelgium,Netherlands,theUnitedKingdomand wintering population in southwest Sweden that France (where the vast majority winter) and de- wasnotpresentbeforethe1990s.IWCdataalso clinesinIrelandandSpain.Interestingly,winter- show thatWigeon remain almostcompletelyab- ingnumbershavetendedtoincreasealongtheBal- sent as wintering birds in the Baltic States (A. ticcoastofGermany,incontrasttodeclinesinthe St(cid:1)pniece unpubl. data) and Finland (A. Lehi- German Wadden Sea in very recent years (JW koinenunpubl.data).Giventheseverityofwinters unpubl. data). However, overall, the increasing there,weconsiderthisisalsolikelytobethecase numbersinthenortheast(c.200,000)anddecreas- throughoutEuropeanRussia.Forthisreason,we Foxetal.:ChangingwinteringWigeonabundanceinnorthwestEurope 21 WigeonharvestedinDenmark(Fig.6bandChris- tensen & Fox 2014) and the patterns of annual variationintheproportionsofyoungbirdscorre- latedpositivelywiththesummerNAO,sothere- centdeclineinreproductivesuccessmaybepartly explained by climate at large spatial scales. De- clines in abundance of breeding Wigeon in Fin- landhavebeenalsobeenrelatedtoeutrophication ofbreedinglakewaters,changesinpredatorabun- dance(Pöysäetal.2013)andtheeffectsoflocal landuse,especiallyagriculture(Arzeletal.2015). However, these effects are likely to be relatively restricted geographically compared to the exten- Fig.7.Graphoftheproportionalchangeinyearto sive breeding range in the Russia taiga where yearwinterpopulationestimatesfortheyears changesinlandusearelikelytohavehadlessim- 1988–2012showninFig.6aplottedagainstthera- pact.Theresultsoftheanalysesherealsosuggest tioofyoungtoadultsintheDanishhunterwingsur- thatsomeevidenceforweakdensitydependence veysinthefirstofthepairedyears.Thefittedre- inbreedingsuccess.Hence,therearelikelytobe gressionmodelhastheformulay=0.0384x –0.1754,r2=0.34,F =11.4,P=0.003. otherlocalorregionalfactorsaffectingannualre- 1,22 productivesuccessaswellasthedominantinflu- enceofclimate.Thenegativerelationshipbetween conclude that, although short-stopping is clearly wintertemperatureandannualchangesinflyway occurringinthisspecies,ithasnotresultedinwin- abundancealsosuggestswinterseveritymaycon- tering Wigeon occurring in Finland and Russia tribute very slightly to annual survival, although wheretheywouldnotbecountedwithintheIWC thiscontributionwasmarginaloverthemajorcon- network.Hence,wehaveconfidencethatthecur- tributionfromdifferencesinreproductivesuccess rent count network is effective at sampling alone.Hence,onthebasisofparsimony,thefact changes in local abundance throughout the Wi- thatthemodelbasedonreproductivesuccesspro- geonwinterrangeandthatthecollatedtrendesti- ducedthebestpredictionsagainstobservedpopu- mates are reflective of the overall abundance in lationsizeandthereducedstrengthofthemodel thisflywaypopulation. incorporatingbothparameterstopredictobserved Basedonthesamereasoning,wecanalsotake population size, we conclude that reproductive someconfidenceinthefactthatafteranincreasein successinagivenyearmakesthegreatestcontri- Wigeon abundance during the late 1980s and butiontoyearonyearchangesinWigeonflyway throughthe1990s,thenumbershavestabilisedin abundance. recentyearsandfallensincethemid-2000s(Fig. Thegreatweaknesswiththistypeofanalysis, 6a).Thecorrelationbetweenchangeinwinterpo- however, continues to be our ignorance of the pulation estimates fromone year to the nextand inter-annualdifferencesinannualsurvivalofthe the breeding output measured by proportions of species.Theabsenceofringingrecoveryorcap- first winter birds harvested in Denmark enabled ture-mark-recapture as an independent means to the retrospective reconstruction of the current estimateannualsurvivalremainsamajorimpedi- trendinoverallpopulationsizebasedonobserved mentinourabilitytotrackandinterpretchangesin abundance in 1988 and annual age ratios since. thedemographyofthecommonerdabblingduck Thisconfirmedtheresultsofstudiesonthebree- species, such as Wigeon, thatare veryimportant dinggroundsinIceland,namelythattheyear-on- quarryspeciesacrosstheEuropeancontinent.Our yearchangesinthesizeoftheWigeonpopulation capacitytomodeltherelativeandactualeffectsof are related to annual reproductive success (Gar- climate and environmental change also remains darsson&Einarsson1994,1997).Thesummersof limitedaslongaswelackbagstatisticsandmore 2002–2010 (excluding 2004) wereyearsof rela- geographicallydispersedmethodsofgaugingan- tively low reproductive success in amongst nualreproductive success (Elmberg etal. 2006).
Description: