ebook img

Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition PDF

154 Pages·2002·11.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition

ANALYZING VIDEO SEQUENCES OF MULTIPLE HUMANS Tracking, Posture Estimation and Behavior Recognition THE KLUWER INTERNATIONAL SERIES IN VIDEO COMPUTING Series Editor Mubarak Shah, Ph.D. University ofCentral Florida Orlando, USA Video is a very powerful and rapidly changing medium. The increasingavailabilityoflowcost, lowpower,highlyaccurate video imagery has resulted in the rapid growth ofapplications using this data. Video provides multiple temporal constraints, which make it easier to analyze a complex, and coordinated series ofevents that cannotbe understoodbyjustlooking atonly asingle image ora few frames. The effective use ofvideo requires understanding ofvideo processing, video analysis, video synthesis, video retrieval, video compressionand otherrelated computingtechniques. The Video Computing book series will provide a forum for the dissemination of innovative research results for computer vision, imageprocessing, databaseand computer graphicsresearchers, who are interested in differentaspects ofvideo. ANALYZING VIDEO SEQUENCES OF MULTIPLE HUMANS Tracking, Posture Estimation and Behavior Recognition Jun Ohya Waseda University Akira Utsumi Advanced Telecommunications Research Institute International Junji Yamato Nippon Telegraph & Telephone Corporation SPRINGER SCIENCE+BUSINESS MEDIA, LLC ISBN 978-1-4613-5346-1 ISBN 978-1-4615-1003-1 (eBook) DOI 10.1007/978-1-4615-1003-1 Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. Copyright © 2002 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 2002 Softcover reprint of the hardcover 1s t edition 2002 AU rights reserved. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without the written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper. Contents ListofFigures ix ListofTables xiii Preface xvii ContributingAuthors xxi 1 Introduction 1 Jun Ohya 2 Trackingmultiplepersonsfrommultiplecameraimages 7 AkiraUtsumi 2.1 OVERVIEW 7 2.2 PREPARATION 9 2.2.1 MultipleObservationsWithMultipleCameras(Observation Redundancy) 9 2.2.2 KalmanFiltering 12 2.3 FEATURESOFMULTIPLECAMERABASEDTRACKINGSyS- TEM 15 2.4 ALGORITHMFORMULTIPLE-CAMERAHUMANTRACKING SYSTEM 17 2.4.1 MotionTrackingOfMultipleTargets 17 2.4.2 FindingNewTargets 21 2.5 IMPLEMENTATION 22 2.5.1 SystemOverview 22 2.5.2 FeatureExtraction 23 2.5.3 FeatureMatchingatanObservationNode 26 2.6 EXPERIMENTS 26 2.7 DISCUSSIONANDCONCLUSIONS 33 Appendix: ImageSegmentationusingSequential-image-basedAdaptation 35 3 Postureestimation 43 Jun Ohya vi ANALYZINGVIDEOSEQUENCESOFMULTIPLEHUMANS 3.1 Introduction 43 3.2 AHeuristicMethodforEstimatingPosturesin2D 46 3.2.1 Outline 46 3.2.2 Locatingsignificantpointsofthehumanbody 46 3.2.2.1 CenterofGravityoftheHumanBody 46 3.2.2.2 OrientationoftheUpperHalfoftheHumanBody 48 3.2.2.3 LocatingSignificantPoints 49 3.2.3 EstimatingMajorJointPositions 52 3.2.3.1 AGABasedEstimationAlgorithm 52 3.2.3.2 ElbowJointPosition 53 3.2.3.3 KneeJointPosition 53 3.2.4 ExperimentalResults andDiscussions 54 3.2.4.1 ExperimentalSystem 54 3.2.4.2 SignificantPointLocationResults 54 3.2.4.3 JointPositionEstimation 54 3.2.4.4 Real-timeDemonstration 57 3.2.5 Summary 57 3.3 AHeuristicMethodforEstimatingPosturesin3D 60 3.3.1 Outline 60 3.3.2 ImageProcessingforTopCamera 61 3.3.2.1 Rotation AngleoftheBody 61 3.3.2.2 SignificantPoints 63 3.3.3 EstimatingMajorJointPositions 65 3.3.4 3DReconstructionoftheSignificantPoints 66 3.3.5 ExperimentalResults andDiscussions 67 3.3.5.1 ExperimentalSystem 67 3.3.5.2 SignificantPointDetectionResults 67 3.3.6 Summary 69 3.4 ANon-heuristicMethodforEstimatingPostures in3D 70 3.4.1 Outline 70 3.4.2 LocatingSignificantPointsforEachImage 70 3.4.2.1 Contouranalysis 71 3.4.2.2 ThetrackingprocessusingKalmanfilterandsubtractionim- ageprocessmg 73 3.4.3 3DReconstructionoftheSignificantPoints 77 3.4.3.1 Frontimage 77 3.4.3.2 Sideimage 77 3.4.3.3 Topimage 78 3.4.3.4 Estimating3Dcoordinates 79 3.4.4 ExperimentalResults 79 3.4.4.1 ExperimentalSystem 79 3.4.4.2 ExperimentalResults 80 3.4.5 Summary 81 3.5 ApplicationstoVirtualEnvironments 86 3.5.1 VirtualMetamorphosis 86 3.5.2 VirtualKabukiSystem 87 3.5.3 The"ShallWeDance?" system 92 3.6 DiscussionandConclusion 94 4 Recognizinghuman behaviorusingHiddenMarkovModels 99 Junji Yamato 4.1 Backgroundand overview 99 Contents vii 4.2 HiddenMarkovModels 102 4.2.1 Outline 102 4.2.2 Recognition 104 4.2.3 Learning 104 4.3 ApplyingHMMtotime-sequentialimages 105 4.4 Experiments 108 4.4.1 Experimentalconditionsandpre-processes 108 4.4.2 Experiment 1 111 4.4.2.1 Experimentalconditions 111 4.4.2.2 Results 111 4.4.3 Experiment2 111 4.4.3.1 Experimentalconditions 111 4.4.3.2 Results 112 4.5 Category-separatedvectorquantization 114 4.5.1 ProbleminVQ 114 4.5.2 Category-separatedVQ 114 4.5.3 Experiment 114 4.6 ApplyingImageDatabaseSearch 121 4.6.1 Processoverview 121 4.6.2 Experiment 1: EvaluationofDCT 121 4.6.3 Experiment2: Evaluationofprecision-recall 124 4.6.4 ExtractingamovingareausinganMC vector 126 4.7 Discussionand Conclusion 129 5 ConclusionandFutureWork 133 fun Ohya Index 137 List ofFigures 1.1 Tracking,PostureEstimationandBehaviorRecognition 2 2.1 Two-dimensionalmotiontrackingusingaone-dimensional observation 10 2.2 (A)Fully-independentobservationsand(B)fully-redundant observations 11 2.3 Timestamps oftwo-cameraobservations 12 2.4 (A)Most-independentobservationsand(B)most-redundant observations 12 2.5 Multiple-camerahuman tracking system 16 2.6 Observationmodel 17 2.7 Kalman-filtering-basedmatching 22 2.8 Systemdiagram 23 2.9 Segmentation withsequential-image-basedadaptation 24 2.10 Featureextraction 24 2.11 Non-synchronous observationwith multiple viewpoints 25 2.12 Trackingresultfor one person 27 2.13 Observationintervals 27 2.14 Trackingresultsfortwo persons 28 2.15 Inputimage sequences (two persons) 29 2.16 Trackingaccuracy fornon-linear motion (circularmotion) 31 2.17 Trackingresults (circularmotion: subjectA) 32 2.18 State Tracking Result (From the top: X position, Y po- sition, human height, and detected motion state for one person's motion) 33 2.19 Exampleofmotionstateextraction(Top: 'walking,' Mid- dle: 'standing,' Bottom: 'sitting.' The horizontal line denotes theextractedheadheight.) 34 2.A.1 HierarchicalAdaptation 35 2.A.2 CoarseSegmentation 36 2.A.3 PixelValueDistributions 37 x ANALYZINGVIDEO SEQUENCESOFMULTIPLEHUMANS 2.A.4 DetectingLow-levelInformation 39 2.A.5 Segmentationusing Intensity Information 40 2.A.6 Segmentationusing Intensity Information 41 3.1 Postureusedforthecalibration 47 3.2 Example ofathermal image (gray-levels representtem- perature values) 47 3.3 Distance-transformed image with a silhouette contour (gray-levels represent distance values: bright and dark levels indicate large andsmallvalues, respectively) 48 3.4 gij image with PAD(the white line) 49 3.5 Findingthe temporary positionofthe head(thecirclein this figure) 50 3.6 Local maximaofaskeletonimage(whitepixels) 50 3.7 Locatingtipoffoot 51 3.8 Contoursegmentsto locatethe tipofthehand 52 3.9 Located significant points (target images are generated by using the 3-Dhumanbody model) 55 3.10 Experimental results and reproduced Kabuki characters (left column: original thermal image; middle column: locatedsignificantpoints; rightcolumn: reproduction in a Kabuki avatar 56 3.11 Estimationresults ofanelbowjointposition 58 3.12 Estimationresults ofakneejointposition 59 3.13 Outlineofthe heuristic methodfor 3D postureestimation 61 3.14 PrincipalAxis (PA)andContourin the Top View 62 3.15 Posturefor InitialCalibrationinthe TopView 62 3.16 Candidate for the Topofthe Headin the Top View 63 3.17 Candidatefor the Tipofthe Footinthe TopView 64 3.18 Candidatefor HandTipin theTopView 66 3.19 OriginalTrinocularImages(upper-left: frontview,upper- right: side view, lower-left: top view, lower-right: no image) 68 3.20 Silhouettes oftheOriginalTrinocularImages 68 3.21 Results ofLocating SignificantPointsin theTrinocularImages 69 3.22 Trinocularcamerasystem 71 3.23 Definition ofLt - scurve 72 3.24 Examples ofLt - scurveanalysis 74 3.25 Examples of Lt - s curve analysis ((a) original image, (b)contourimage, (c) Lt- scurve,(d) k-curvature,(e) ~ - Scurve 75 ListofFigures xi 3.26 Estimating the rotation angle using the skeleton Image inthe top view 78 3.27 Examples ofEstimatingPostures in 3D 82 3.28 Examples ofEstimatingPostures in30 83 3.29 Examples ofEstimatingPostures in3D 84 3.30 EvaluationofEstimatedPositions ofLeftHand 85 3.31 VirtualKabuki System 88 3.32 Windows forEstimatingFacialExpressions 89 3.33 OCTFeatureCalculation 89 3.34 Changesin OCTFeaturesandFacialComponents' Shapes 90 3.35 ReferenceFacialExpressionsCreatedby Artist 91 3.36 Examples ofFacialExpressionReproduction 91 3.37 Scenes ofthe VirtualKabuki System 92 3.38 The "ShallWe Dance?" system 93 3.39 Automatic FaceTracking 94 4.1 ConceptofHiddenMarkovModels 103 4.2 Processing flow 106 4.3 Meshfeature 107 4.4 Sampleimage sequence 108 4.5 Extractionofhuman region 109 4.6 Extractedhumanimages 109 4.7 Targettennisactions 110 4.8 Category separatedVQ 115 4.9 Feature vectorsequenceinfeature space 116 4.10 Codebookgeneratedfrom LBG Algorithm 117 4.11 Ergodic HMM and LRHMM 118 4.12 Recognition rate(1) 119 4.13 Recognition rate(2) 120 4.14 Processingflowofcontent-basedimagedatabaseretrieval using HMM behaviorrecognition method 122 4.15 Extracting lowerfrequency portion ofDCTcoefficients 123 4.16 Recognition rates using DCTas afeature 124 4.17 Spottingbehaviorsby thresholding log-likelihood 125 4.18 Precision rateandrecallrate 126 4.19 Moving areaextractionusing MC 127 4.20 Movingareaextractionusing asimplethresholdofMe. 128 4.21 Extractedmoving areas usingacombinationofMC andOCT. 129 5.1 Tracking, PostureEstimationandBehaviorRecognition 134

Description:
Analyzing Video Sequences of Multiple Humans: Tracking, Posture Estimation and Behavior Recognition describes some computer vision-based methods that analyze video sequences of humans. More specifically, methods for tracking multiple humans in a scene, estimating postures of a human body in 3D in re
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.