ebook img

Analyzing the Power Spectrum of the Little Bangs PDF

0.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analyzing the Power Spectrum of the Little Bangs

JournalLogo NuclearPhysicsA00(2011)1–4 Analyzing the Power Spectrum of the Little Bangs A´gnesMo´csya,PaulSorensenb aPrattInstitute,DepartmentofMathandScience,Brooklyn,NY11205USA bPhysicsDepartment,BrookhavenNationalLaboratory,UptonNY11973USA 1 1 0 2 Abstract n a In this talk we discuss the analogy between data from heavy-ion collisions and the Cosmic Microwave Back- J ground. Weidentify pT correlationsdataastheheavy-ionanalogytotheCMBandextractapower-spectrumfromthe 0 heavy-iondata. Wedefinetheratioofthefinalstatepower-spectrumtotheinitialcoordinate-spaceeccentricityasthe 1 transfer-function.Fromthetransfer-functionwefindthathigherntermsaresuppressedandwearguethatthesuppres- ] sionprovidesinformationonlengthscaleslikethemean-free-path. Wemakearoughestimateofthemean-free-path h andfindthatitislargerthanestimatesbasedonthecentralitydependenceofv . p 2 - Keywords: Quark-gluonplasma,correlations,fluctuations p e h [ Acommonlyquotedgoaloftheheavy-ionprogramsatBrookhavenNationalLaboratoryandCERNistorecreate conditionssimilartothoseshortlyaftertheBigBang[1]. Learningabouttheearlystagesofthematterproducedin 1 heavy-ioncollisionsfromtheobservationofhadronsinthefinalstateisinsomesensesimilartounderstandingthe v 6 stagesoftheearlyuniversefromtheobservationoftheCosmicMicrowaveBackground(CMB)[2]. Inthistalkwe 2 exploretheanalogybetweenheavy-ioncollisionsandBigBangcosmology[3]. Inparticular,wepresenttheheavy- 9 ionequivalentoftheCMBandfromthatwedeterminethepower-spectrumforthelittlebangs. Wethenestimatethe 1 transfer-functionnecessarytoproducethespectrumfromtheinitialconditionsofthecollisions. . 1 Quantum fluctuations from the early universe show up as hotspots at the surface of last scattering, creating the 0 CMB measured for example by WMAP. Measurements of the CMB reveal temperature fluctuations corresponding 1 to over- or under-densities present at the surface of last scattering at about 400,000 years after the Big Bang [2]. 1 Thesedensityfluctuationsultimatelyexplainthestructureinouruniverse. MapsofthetemperatureoftheCMBare : v determined from measurements of the blackbody spectra at 2M points in the sky. The temperature is found to be Xi verysmoothwithrelativevariationsonlyshowingupatapproximately10−5. Thefluctuationstendtoonlybeatshort distances;smalllumpsnotlargeones. Thisresulthasbeenexplainedbyaninflationaryperiodwhenthelargerscale r a fluctuationswerepushedoutsideofthehorizon,causallyseparatingthem. The scale of the correlations can be most easily studied by extracting a power-spectrum from the CMB. The power-spectrumshowsthatmostpowerisforlargewave-numbers(meaningsmallwavelength). Thelackofpowerat smallwave-numberisstrongevidenceofinflation. Peaksinthepower-spectrumarecausedbyacousticphenomenain theearlyuniverseasdensityperturbationsintheuniversepropagateassoundwaves. Thisgivesrisetothestructurein theanisotropiesofthemicrowavebackground,notablyacharacteristicangularscaleandthefamousacousticpeaks. Fromthisspectrumtheacousticpeaksarefitwithmodelstoextractcosmologicalparameters. Inthistalkweexplore an analogous measurement in heavy-ion collisions. We determine the power-spectrum for the little bangs and we estimatethetransfer-functionnecessarytoproducethespectrumfromtheinitialconditions. Just as quantum fluctuations stretched to cosmic sizes by inflation show up in the CMB, we expect fluctuations from the beginning of the little bangs to show up in heavy-ion data. Mishra et. al first have explored the analogy /NuclearPhysicsA00(2011)1–4 2 Figure1: Top:thelengthscalesintheCMB.Bottom:thelengthscalesprobedwithhigherninheavy-ioncollisions. betweentheexpansionofheavy-ioncollisionsstartingfromalumpyinitialenergydensityandtheexpansionofthe universestartingwithquantumfluctuationsstretchedtocosmologicalsizes,andbasedonthatanalogysuggestedmea- suringRMSvaluesoftheFouriercoefficientsv (knownasflowcoefficients)asthepower-spectrum[3]. Theydidn’t, n however,makeaconnectionbetweentheRMSofv andthealreadyexistingtwo-particlecorrelationmeasurements. n Sorensenlaterpointedout[4]thatmanyofthesurprisingcorrelationstructuresseeninRHICdata(theridgeandmach cones[5])maybeunderstoodintermsoffluctuationsofhigherFouriercomponentsofv whichMishraet. al. had n arguedwouldarisefromanisotropiesintheinitialenergydensityconvertedintomomentum-spaceduringtheexpan- sion. Severalotherauthorshavealsopreviouslyexploredtheconnectionbetweeninitialconditionsandtwo-particle correlations[6,7,8,9,10,11]. While quantum fluctuations stretched to cosmic sizes by inflation explain the temperature fluctuations in the CMB, lets see how density fluctuations at the beginning of heavy-ion collisions might show up in the correlations data. Wehavesomeexpectationsabouttheinitialstate: giventhatthecollisionsinvolvenucleiwithafinitenumber of nucleons, we expect that the initial density is inhomogeneous, it has a lumpiness. Every event is unique and no event is homogeneous. We do not dwell for the moment on the exact theory to describe these initial fluctuations, butonlypointoutthatthefinitenumberofchargesintheapproachingnucleiimpliesthattheinitial(energy)density is lumpy (even if we consider a larger number of gluons in the nucleus, those gluons are still confined in the radial direction within the typical size of the nucleons). The lumpy initial density may survive through the evolution and show up at the end as hotspots in the surface of last scattering. We expect this because the rapid expansion boosts theselumpsoutwardandthedecayofthehotspotsincoordinate-spacemanifestsincorrelationsinmomentum-space duetoflow[6]. Thelumpyinitialconditionsshowupinthe2-particlecorrelationstructures. Theplausibilityofthis conjecturehasbeenverifiedwithmultiplemodelsforheavy-ioncollisions[9,10,11,12]. For the analogy with the CMB we are interested in temperature-correlations. Thus we need to consider how muchoftheinitialinhomogeneitywillbetransferredintothefinalstate. Simulationsbasedonhydrodynamicmodels indicate that collisions of Au nuclei (12 fm across) may contain hotspots of size 1.5 fm and that remnants of those hotspots persists during the collisions evolution [12]. How much of this initial inhomogeneity is being transferred into the final state depends on the mean-free-path l and it’s relation to the size of the hotspots. The higher the mfp valueofn,thesmallerthelengthscaleweareprobing. Ann = 2asymmetry(thinkofv )canbetranslatedbecause 2 the l is small compared to the length probed by n = 2. That’s why ideal hydro works well for v . The fact that mfp 2 hydrodynamic models do a reasonable job of predicting the value of v suggests that l can be considered small 2 mfp comparedtothesizeofthesystem. Butwhataboutn = 3orevenlarger? AsillustratedinFig.1,asweincreasen, wereducethelengthscaleprobed. Ifthemean-free-pathisgreaterthanthelengthscale,thereisnotranslationfrom coordinate-spaceintomomentum-space. Weonlyexpectanefficientconversionofcoordinate-spaceanisotropiesinto /NuclearPhysicsA00(2011)1–4 3 momentum-space when l < 2π(cid:104)R(cid:105)/n where (cid:104)R(cid:105) is the average radial position of the systems constituents. This mfp relationwascheckedinasimulationbycalculatingtheinitialparticipanteccentricityforallvaluesofn(ε2 )[10] n,part fromaMonteCarloGlaubermodel[13]. Forcentralcollisions,whentheparticipantsaretreatedaspointlike,ε2 n,part isnearlyindependentofn. Whentheparticipantsaresmearedoveraregionofsizer ,ε2 athighernbecomes part n,part quenched. Wefindthatε2 isreducedbyhalfwhenr <2π(cid:104)R(cid:105)/nandarguethatl willhaveasimilareffectas n,part part mfp r . Thepower-spectrumtellsusthepowertransferredintoeachharmonicnasafunctionofn. Clearly,thebehavior part of the power-spectrum can be used to extract information about length scales like l . By examining the power- mfp spectrumofheavy-ioncollisionswhichincludesinformationforallvaluesofn(beyondjustn = 2or3),wehopeto betterconstrainl [14].Wenotethatotherlengthscalesthatcouldbeimportanthavebeenidentified:thermalscale; mfp timeoffreestreaming;sizeofhadrons;etc[15]. Todeterminethepower-spectrumwetaketheSTARdataof p correlationsvstherelativeazimuthalanglesand T the relative rapidity between the particles [16]. We use this correlation measurement since this is a good proxy for point-to-pointtemperature-fluctuations:justliketheblackbodyspectrum,thep spectracanreflectthetemperaturein T heavy-ioncollisions.Anarrowpeakpositionedaroundsmallangleseparationisobservedinthedata.Thistellsusthat ifaparticlecomesoutwithaboveaverage p ,thenthenearbyparticlesalsotendtohavelarge p . Thisisconsistent T T withexpectationsfromhotspotsonthesurfaceoflastscattering. Thecorrelationofthesefastparticlessuggeststhat theyarebornoutofthesamehigh-density,high-temperaturelump,i.e.thesamehotspot.Therelevanceoftemperature fluctuationstoheavy-iondataissupportedbytheimprovementto p spectrafitsusingaTsallisdistribution[17]. T We considered a slice of the p correlations at zero relative rapidity vs relative azimuthal angle. We Fourier- T transform this correlation to generate a power-spectrum vs harmonic number n. The coefficients of the Fourier de- composition a give us the power-spectrum. This is shown in the left plot of Figure 2. The a are similar to v2 but n n n extractedfrom p correlationsinsteadofnumbercorrelations[18]. a isthepower-spectrumforheavy-ioncollisions T n anditistheanalogousmeasurementtothatoftheCMB.Wefindthatmostofthepowerisinthelowestmodesanda n fallsoffrapidlywithn. Modesotherthann=2howeverstillshowasignificantcontribution. FortheCMB,thelowestmodesarestronglysuppressedandsignificantacousticoscillationsshowupatl = 200. Thisisduetothefactthatintheearlyuniverseinflationstretchesthefluctuationsby30ordersofmagnitudesothat thesmallwavenumbersareoutsidetheacoustichorizon. Mishraet. alhadproposedlookingforsuppressionofsmall nmodesduetoanacoustichorizoninheavy-ioncollisions[3],butweseeisclearlyasuppressionoflargenmodes. Wearguethatthisisbecauseviscosityisfarmoreimportantinheavy-ioncollisionsthanintheearlyuniverse[19]. Apparently, the damping due to various length-scales in heavy-ion collisions (l , etc.) is the dominant effect. mfp Nextwewanttocomparethefinalpower-spectrumtotheinitialcoordinate-spaceanisotropy. Theazimuthaldistribu- tionofmatterintheinitialoverlapzoneiscalculatedusingtheparticipanteccentricityforallharmonicsnε2 [10]. n,part WestartwithaGlaubermodel[13]fortheinitialspatialdistributionofparticipantsforperfectlycentralcollision(b=0 fm)inordertocomparetodataalsoforthe5%mostcentralcollisions. Theresultsareshowninthemiddleplotof Figure2. Thelargen=2termpersistsevenforcentralcollisionsbecauseweincludetheintrinsicdeformationofthe AunucleusinourMonteCarlo. Then=1termissmallbecausetheparticipantsarere-centeredtothecenterofmass. For central collisions for n ¿ 2 the eccentricity is nearly independent of n (the higher harmonics are important too). Thisisbecauseforsymmetriccollisionsandpoint-likeparticipants,ε2 dependsonlyonthenumberofparticipants, n,part independentofn. Weexpect,however,thattheconversionofhigherharmoniceccentricitywillbedampedduetothe existenceofthelengthscalel . Givingtheparticipantsasizecausestheeccentricitytofallofffasterwithn. The mfp drop occurs where the size of the participant is larger than the lengthscale corresponding to n the ε2 is smeared n,part out[20]. Wedefinetheratioa /ε2 asthetransfer-function[14]andshowitontherightplotofFigure2. Thetransfer- n n,part functiongivesusinformationabouthowefficientlythecoordinate-spaceanisotropyhasbeenconvertedintomomentum- space. The transfer-function derived from data and the Glauber model shows that as n increases, the efficiency for converting coordinate-space anisotropy into momentum-space quickly drops off. This can be expected from the condition that the transfer-function should go to zero when l is larger than the length-scale associated with n: mfp n > 2π(cid:104)R(cid:105)/l . Wecanmakeacrudeestimateforl basedonthetransfer-function. Ifwetake(cid:104)R(cid:105) = 3fmforthe mfp mfp averageradialpositionofaparticipantandn=6astheharmonicbeyondwhichtheconversionisinefficient,thenwe getl = 3fm. Thisestimatecanbeimprovedwithamorecompletemodelofheavy-ioncollisions. Thisestimate mfp correspondstoaviscosityseveraltimeslargerthanestimatesbasedonthecentralitydependenceofv [19]orfrom 2 /NuclearPhysicsA00(2011)1–4 4 Figure2:Left:thepower-spectrumanextractedfrompT correlationsinheavy-ioncollisions.Middle:theparticipanteccentricitycalculatedfrom aMonte-CarloGlaubermodel. Right: thetransfer-functionforheavy-ioncollisionsshowingthesuppressionathighervaluesofninthefinal momentum-spacecomparedtotheinitialcoordinate-space. the longitudinal width of p correlations [21]. Our crude estimate, however, is geometry based, not accounting for T thevariousphasesoftheexpansion. We’ve used p correlations from heavy-ion collisions to extract a power-spectrum analogous to the power- T spectrum extracted from the Cosmic Microwave Background. We calculated the initial state eccentricity and then find the transfer-function which we define as the ratio of the power-spectrum to the initial eccentricity. We argue that the transfer-function required to describe the RHIC data may potentially be understood in terms of an ineffi- ciency in conversion of coordinate-space anisotropy into momentum-space when l > 2π(cid:104)R(cid:105)/n. We used this mfp transfer-function to make a rough estimate of the mean-free-path of the system’s constituents. The introduction of theharmonicaxisnprovidesmoredetailedinformation. Thisapproachrepresentsanewmethodfordeterminingthe characteristics of heavy-ion collisions and the QGP and should be further investigated. It stands as a challenge for models of heavy-ion collisions to correctly describe this transfer-function: in other words, to correctly describe the conversionofcoordinate-spaceanisotropiesatallscalesintomomentum-spaceanisotropiesatallscales. References [1] K.Yagi,T.HatsudaandY.Miake,Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol.23,1(2005);H.SchadeandB.Kampfer,Phys.Rev.C 79,044909(2009);D.Boyanovsky,H.J.deVega,D.J.Schwarz,Ann.Rev.Nucl.Part.Sci.56,441-500(2006). [2] http://map.gsfc.nasa.gov/ [3] A.P.Mishraetal.,Phys.Rev.C77,064902(2008). [4] P.Sorensen,J.Phys.G:Nucl.Part.Phys.37094011(2010). [5] M.Daugherity[STARCollaboration],J.Phys.G35,104090(2008); J.Adamsetal.[STARCollaboration]Phys.Rev.Lett.95:152301, (2005);J.Adamsetal.[STARCollaboration],Phys.Rev.C73(2006)064907;B.I.Abelevetal.[STARCollaboration],Phys.Rev.C80, 064912(2009);J.Adamsetal.[StarCollaboration],Phys.Rev.C75(2007)034901;B.Alveretal.[PHOBOSCollaboration],J.Phys.G35, 104080(2008). [6] S.A.Voloshin,Nucl.Phys.A749,287-290(2005);Phys.Rev.B632,490(2006);Nucl.Phys.A802,107(2008). [7] S.Gavin,G.Moschelli,J.Phys.GG35,104084(2008). [8] A.Dumitruetal.,Nucl.Phys.A810,91(2008);S.Gavin,L.McLerran,G.Moschelli,Phys.Rev.C79,051902(2009). [9] J.Takahashietal.,Phys.Rev.Lett.103,242301(2009). [10] B.Alver,G.Roland,Phys.Rev.C81,054905(2010). [11] H.Petersenetal.,[arXiv:1008.0625[nucl-th]]. [12] K.Werneretal.,arXiv:1004.0805[nucl-th]. [13] M.L.Milleretal.,Ann.Rev.Nucl.Part.Sci.57,205(2007). [14] A´.Mo´csy,P.Sorensen,[arXiv:1008.3381[hep-ph]]. [15] P.StaigandE.Shuryak,arXiv:1008.3139[nucl-th]. [16] J.Adamsetal.[STARCollaboration],J.Phys.G32,L37(2006). [17] Z.Tangetal.,Phys.Rev.C79,051901(R)(2009). [18] T.A.TrainorandD.T.Kettler,Int.J.Mod.Phys.E17,1219(2008).T[arXiv:0704.1674[hep-ph]]. [19] H.J.Drescheretal.,Phys.Rev.C76,024905(2007). [20] P.Sorensen,theseproceedings. [21] S.GavinandM.Abdel-Aziz,Phys.Rev.Lett.97,162302(2006).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.