ebook img

Analyzing Spatial Models of Choice and Judgment with R PDF

351 Pages·2014·2.599 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analyzing Spatial Models of Choice and Judgment with R

Analyzing Spatial Models of Choice and Judgment with R K15094_FM.indd 1 12/19/13 10:30 AM Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Series Editors Jeff Gill Steven Heeringa Washington University, USA University of Michigan, USA Wim van der Linden J. Scott Long CTB/McGraw-Hill, USA Indiana University, USA Tom Snijders Oxford University, UK University of Groningen, UK Aims and scope Large and complex datasets are becoming prevalent in the social and behavioral sciences and statistical methods are crucial for the analysis and interpretation of such data. This series aims to capture new developments in statistical methodology with particular relevance to applications in the social and behavioral sciences. It seeks to promote appropriate use of statistical, econometric and psychometric methods in these applied sciences by publishing a broad range of reference works, textbooks and handbooks. The scope of the series is wide, including applications of statistical methodology in sociology, psychology, economics, education, marketing research, political science, criminology, public policy, demography, survey methodology and official statistics. The titles included in the series are designed to appeal to applied statisticians, as well as students, researchers and practitioners from the above disciplines. The inclusion of real examples and case studies is therefore essential. K15094_FM.indd 2 12/19/13 10:30 AM Published Titles Analyzing Spatial Models of Choice and Judgment with R David A. Armstrong II, Ryan Bakker, Royce Carroll, Christopher Hare, Keith T. Poole, and Howard Rosenthal Analysis of Multivariate Social Science Data, Second Edition David J. Bartholomew, Fiona Steele, Irini Moustaki, and Jane I. Galbraith Latent Markov Models for Longitudinal Data Francesco Bartolucci, Alessio Farcomeni, and Fulvia Pennoni Statistical Test Theory for the Behavioral Sciences Dato N. M. de Gruijter and Leo J. Th. van der Kamp Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences Brian S. Everitt Bayesian Methods: A Social and Behavioral Sciences Approach, Second Edition Jeff Gill Multiple Correspondence Analysis and Related Methods Michael Greenacre and Jorg Blasius Applied Survey Data Analysis Steven G. Heeringa, Brady T. West, and Patricia A. Berglund Informative Hypotheses: Theory and Practice for Behavioral and Social Scientists Herbert Hoijtink Foundations of Factor Analysis, Second Edition Stanley A. Mulaik Linear Causal Modeling with Structural Equations Stanley A. Mulaik Handbook of International Large-Scale Assessment: Background, Technical Issues, and Methods of Data Analysis Leslie Rutkowski, Matthias von Davier, and David Rutkowski Generalized Linear Models for Categorical and Continuous Limited Dependent Variables Michael Smithson and Edgar C. Merkle Incomplete Categorical Data Design: Non-Randomized Response Techniques for Sensitive Questions in Surveys Guo-Liang Tian and Man-Lai Tang K15094_FM.indd 3 12/19/13 10:30 AM TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences Series Analyzing Spatial Models of Choice and Judgment with R David A. Armstrong II University of Wisconsin-Milwaukee Ryan Bakker University of Georgia Royce Carroll Rice University Christopher Hare University of Georgia Keith T. Poole University of Georgia Howard Rosenthal New York University K15094_FM.indd 5 12/19/13 10:30 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2014 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20131212 International Standard Book Number-13: 978-1-4665-1716-5 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface xi Author Biographies xix 1 Introduction 1 1.1 The Spatial Theory of Voting . . . . . . . . . . . . . . . . . . 2 1.1.1 TheoreticalDevelopmentandApplicationsoftheSpa- tial Voting Model . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 The Development of Empirical Estimation Methods for Spatial Models of Voting . . . . . . . . . . . . . . . 7 1.1.3 The Basic Space Theory . . . . . . . . . . . . . . . . . 8 1.2 Summary of Data Types Analyzed by Spatial Voting Models 11 1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 The Basics 13 2.1 Data Basics in R . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 Storage Modes . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Missing Values . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Recoding Data . . . . . . . . . . . . . . . . . . . . . . 18 2.1.4 Probability Distributions and Random Numbers . . . 19 2.1.5 Loops and Functions . . . . . . . . . . . . . . . . . . . 20 2.1.6 The apply and sweep Functions . . . . . . . . . . . . . 21 2.1.7 Sorting Data . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.8 Creating Scatter Plots and Kernel Density Plots . . . 23 2.2 Reading Data in R . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Reading Data from Stata into R . . . . . . . . . . . . 28 2.2.2 Reading Data from SPSS into R . . . . . . . . . . . . 29 2.2.3 Reading Text and Spreadsheet Files into R . . . . . . 32 2.3 Writing Data in R . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.1 Writing Data as a Stata File . . . . . . . . . . . . . . 35 2.3.2 Writing Data as Text and .csv Files . . . . . . . . . . 36 2.3.3 The dput/dget and save/load Functions in R . . . . . 37 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 vii viii 3 Analyzing Issue Scales 39 3.1 Aldrich-McKelvey Scaling . . . . . . . . . . . . . . . . . . . . 40 3.1.1 The basicspace Package in R . . . . . . . . . . . . . . 43 3.1.2 Example 1: 2009 European Election Study (French Module) . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.3 Example 2: 1968 American National Election Study Urban Unrest and Vietnam War Scales. . . . . . . . . 49 3.1.4 EstimatingBootstrappedStandardErrorsforAldrich- McKelvey Scaling . . . . . . . . . . . . . . . . . . . . . 55 3.1.5 Bayesian Aldrich-McKelvey Scaling . . . . . . . . . . . 56 3.1.6 Comparing Aldrich-McKelvey Standard Errors . . . . 61 3.2 Basic Space Scaling: The blackbox Function . . . . . . . . . . 66 3.2.1 Example 1: 2000 Convention Delegate Study . . . . . 67 3.2.2 Example 2: 2010 Swedish Parliamentary Candidate Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2.3 Estimating Bootstrapped Standard Errors for Black Box Scaling . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3 Basic Space Scaling: The blackbox transpose Function . . . . 83 3.3.1 Example1: 2000and2006ComparativeStudyofElec- toral Systems (Mexican Modules) . . . . . . . . . . . . 83 3.3.2 Estimating Bootstrapped Standard Errors for Black Box Transpose Scaling . . . . . . . . . . . . . . . . . . 87 3.3.3 Using the blackbox transpose Function on Datasets with Large Numbers of Respondents . . . . . . . . . . 89 3.4 Anchoring Vignettes . . . . . . . . . . . . . . . . . . . . . . . 91 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 Analyzing Similarities and Dissimilarities Data 103 4.1 Classical Metric Multidimensional Scaling . . . . . . . . . . . 104 4.1.1 Example 1: Nations Similarities Data . . . . . . . . . 107 4.1.2 Metric MDS Using Numerical Optimization . . . . . . 109 4.1.3 Metric MDS Using Majorization (SMACOF) . . . . . 114 4.1.4 The smacof Package in R . . . . . . . . . . . . . . . . 114 4.2 Non-metric Multidimensional Scaling . . . . . . . . . . . . . . 119 4.2.1 Example 1: Nations Similarities Data . . . . . . . . . 120 4.2.2 Example 2: 90th US Senate Agreement Scores . . . . 123 4.3 Bayesian Multidimensional Scaling . . . . . . . . . . . . . . . 128 4.3.1 Example 1: Nations Similarities Data . . . . . . . . . 129 4.4 Individual Differences Multidimensional Scaling . . . . . . . . 132 4.4.1 Example 1: 2009 European Election Study (French Module) . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ix 5 Unfolding Analysis of Rating Scale Data 147 5.1 Solving the Thermometers Problem . . . . . . . . . . . . . . . 148 5.2 Metric Unfolding Using the MLSMU6 Procedure . . . . . . . 150 5.2.1 Example 1: 1981 Interest Group Ratings of US Sena- tors Data . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.3 Metric Unfolding Using Majorization (SMACOF) . . . . . . . 156 5.3.1 Example 1: 2009 European Election Study (Danish Module) . . . . . . . . . . . . . . . . . . . . . . . . . . 159 5.3.2 Comparing the MLSMU6 and SMACOF Metric Un- folding Procedures . . . . . . . . . . . . . . . . . . . . 163 5.4 Bayesian Multidimensional Unfolding . . . . . . . . . . . . . . 165 5.4.1 Example 1: 1968 American National Election Study Feeling Thermometers Data . . . . . . . . . . . . . . . 166 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 6 Unfolding Analysis of Binary Choice Data 183 6.1 The Geometry of Legislative Voting . . . . . . . . . . . . . . 184 6.2 Reading Legislative Roll Call Data into R with the pscl Pack- age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 6.3 Parametric Methods - NOMINATE . . . . . . . . . . . . . . . 189 6.3.1 ObtainingUncertaintyEstimateswiththeParametric Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 193 6.3.2 Types of NOMINATE Scores . . . . . . . . . . . . . . 193 6.3.3 Accessing DW-NOMINATE Scores . . . . . . . . . . . 195 6.3.4 The wnominate Package in R . . . . . . . . . . . . . . 196 6.3.5 Example 1: The 108th US House . . . . . . . . . . . . 197 6.3.6 Example 2: The First European Parliament (Using the Parametric Bootstrap) . . . . . . . . . . . . . . . . 212 6.4 MCMC or α-NOMINATE . . . . . . . . . . . . . . . . . . . . 214 6.4.1 The anominate Package in R . . . . . . . . . . . . . . 217 6.5 Parametric Methods - Bayesian Item Response Theory . . . . 221 6.5.1 The MCMCpack and pscl Packages in R . . . . . . . . 225 6.5.2 Example 1: The 2000 Term of the US Supreme Court (Unidimensional IRT) . . . . . . . . . . . . . . . . . . 225 6.5.3 Running Multiple Markov Chains in MCMCpack and pscl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6.5.4 Example2: TheConfirmationVoteofRobertBorkto the US Supreme Court (Unidimensional IRT) . . . . . 234 6.5.5 Example 3: The 89th US Senate (Multidimensional IRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 6.6 Nonparametric Methods - Optimal Classification . . . . . . . 249 6.6.1 The oc Package in R . . . . . . . . . . . . . . . . . . . 250 6.6.2 Example1: TheFrenchNationalAssemblyduringthe Fourth Republic . . . . . . . . . . . . . . . . . . . . . 250

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.