ebook img

Analytical view of diffusive and convective cosmic ray transport in elliptical galaxies PDF

0.68 MB·English
by  T. Hein
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytical view of diffusive and convective cosmic ray transport in elliptical galaxies

Astronomy&Astrophysicsmanuscriptno.transport˙arxiv c ESO2008 (cid:13) February2,2008 Analytical view of diffusive and convective cosmic ray transport in elliptical galaxies 8 T.HeinandF.Spanier 0 0 2 Lehrstuhlfu¨rAstronomie,UniversityofWu¨rzburg,AmHubland,D-97074Wu¨rzburg n a J 0 Received10.09.07,accepted07.11.07 1 ] h p ABSTRACT - o r t Context.Ananalyticalsolutionofthegeneralizeddiffusiveandconvectivetransportequationis s a derivedtoexplainthetransportofcosmicrayprotonswithinellipticalgalaxies. [ Aims.Cosmicraytransportwithinellipticalgalaxiesisaninterestingelementinunderstanding 1 theoriginofhighenergeticparticlesmeasuredonEarth.Asprobablesourcesofthosehighener- v 9 geticparticles,ellipticalgalaxiesshowadenseinterstellarmediumasaconsequenceofactivity 2 inthegalacticnucleusormergingeventsbetweengalaxies.Thusitisnecessaryforanappropri- 6 1 atedescriptionofcosmicraytransporttotakethediffusiveandconvectiveprocessesinadense . 1 interstellarenvironment intoaccount.Hereweshow thatthetransportequationscanbesolved 0 analyticallywithrespecttothegivengeometryandboundaryconditionsinpositionspace,aswell 8 0 asinmomentumspace. : v Methods.FromtherelativisticVlasovequation, whichisthemostfundamental equation for a i X kinetic description of charged particles within the interstellar medium in galaxies, one finds a r generalized diffusion-convection equation in quasilinear theory. This has the form of a ‘leaky a box’ equation, meaning particlesareabletoescapetheconfinement regionbydiffusingout of thegalaxy.Weapplyherethe‘diffusionapproximation’,meaningthatdiffusioningyrophaseand pitchanglearethefastestparticle-waveinteractionprocesses.Ananalyticalsolutioncanbeob- tainedusingthe‘scatteringtimemethod’,i.e.separationofthespatialandmomentumproblems. Results.Thespatialsolutionisshownusingageneralizedsourceofcosmicrays.Additionally, thespecialcaseofajet-likesourceisillustrated.Wepresentthesolutioninmomentumspacewith respecttoanescapetermforcosmicrayprotonsdependingonthespatialshapeofthegalaxy.For adelta-shapeinjectionfunction,themomentumsolutionisobtainedanalytically.Wefindthatthe spectralindexmeasuredonEarthcanbeobtainedbyappropriatelychoosingofthestrengthof FermiIandFermiIIprocesses.Fromtheseresultswecalculatethegamma-rayfluxfrompion decayduetoproton-protoninteractiontogiveconnectiontoobservations.Additionallywedeter- minetheescape-spectrumofcosmicrays.Theresultsshowthatbothspectraareharderthanthe intrinsicpower-lawspectrumforcosmicraysinellipticalgalaxies. Keywords.cosmicrays:general–transportmodel–diffusiveprocesses–convectiveprocesses 2 T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies 1. Introduction Since theirdiscoveryby ViktorHessin 1912,cosmicrayshavebeenone ofthe biggestfields of interestinastrophysics,andyettheoriginoftheseparticlesisstillanopenquestion.Fullyionized atomic nuclei reach the Earth coming from outside the solar system with very high energies up to1020 eV.Mostofthemwithenergies< 1017 eV seemtooriginateintheMilkyWay,whilethe highestenergeticonesare consideredto haveanextragalacticorigin(fora reviewsee Hoerandel 2007). The most acceptedmodelfor the originof ultrahighenergycosmic rays(UHECRs) is accel- erationinshockfrontsduetoFermiprocesses(Fermi1949);hence,themainsourcesaregamma raybursts(GRBs),activegalaxieslikeactivegalacticnuclei(AGN)(Tavecchio2005),orcolliding galaxies. The last two are specially interesting for two reasons. First UHECRs can be generated in elliptical galaxies. Second the increase in the interstellar medium density in objects of these typesinfluencescosmicraytransport(see Bekki&Shioya1998).Butsinceallellipticalgalaxies haveaninterstellarmediumduetostarwinds,weconcludethatthestudyoftransportprocessesis interestingingeneral(seeKnapp1999). Inparticular,asaresultoftheGZK-effect,verycloseAGNarethemostprobablecandidates forUHECRsources(seeBiermann1995).OneofthesenearbyAGNisthegiantellipticalgalaxy M87. It is proposed that this galaxy is responsible for acceleration of cosmic ray protonsdue to Fermi I processes (Blandford&Ostriker 1978; Riegeretal. 2007) in shockfronts within the jet (Reimeretal. 2004). For an overviewof protonaccelerationin jets (see Mannheim1993). Since particleaccelerationinajetislocatedwithinactivegalaxiessurroundedbyaninterstellarmedium, thehighenergeticprotonsundergophysicaltransportprocessesbeforetheyescapeoutofthegalaxy and reach the detectors on Earth, making a model for cosmic ray transport in elliptical galaxies inevitable.Thishelpsgiveananswertothequestionabouttheoriginofcosmicrays. Progress has been made in the field of modeling cosmic ray transport with the numerical description of transportprocesses by Owens&Jokipii (1977) and Strong&Moskalenko (1998). NeverthelesswefollowthebasicideaspresentedintheunderlyingpapersofLerche&Schlickeiser (1985), Wang&Schlickeiser (1987), and Lerche&Schlickeiser (1988), who used an analytical description of cosmic ray transport. In relation to our work such, a treatment has the following advantages: the model is adequate for cosmic ray transport within any kind of elliptical galaxy includingarbitrarycosmicraysourcesandthe physicalparametersinvolvedinourmodelcanbe easily fitted to measurements. After all, our analytical model can serve as a test case for more profoundnumericalmodels. Inthispaperwesolvethecosmicraytransportequationanalyticallywithrespecttoa kinetic descriptionof the interstellar plasma in elliptical galaxies. Specialattention is paid to the spatial transportofchargednuclei.Inaddition,thesolutionofthemomentumequationisderivedto ex- plain generalpropertiesof this model.As a result, we presentillustrative examplesof spatial, as wellasmomentum,cosmicraytransportforgivensourcesofchargednuclei.Toshowtheconnec- tiontoobservations,wecalculatethegamma-rayfluxfromneutralpiondecay.Thesemesonsare producedby inelastic scattering processes between cosmic ray protons. The resulting power-law Sendoffprintrequeststo:F.Spanier, e-mail:[email protected] T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies 3 spectrum is slightly harder than the intrinsic one for cosmic rays. Finally, we presentthe escape spectrumofchargedparticlesleavingellipticalgalaxies.Similartothegamma-rayflux,thisspec- trumisflatterthantheintrinsicone. 2. Basicequations To describe the propagation of cosmic ray nuclei within elliptical galaxies, we follow Lerche&Schlickeiser(1985), Lerche&Schlickeiser(1988)andSchlickeiser(2002).Forthe de- scriptionoftransportprocessestheyusethe‘diffusionapproximation’,whichmeansthatthefastest particle-plasmawave interactionprocessesare diffusionin gyrophaseandpitch angle.Thusfol- lowingJokipii(1966),Hasselmann&Wibberenz(1968),andSkilling(1975),wetakeanisotrope particledistributionfunctioninmomentumspace.Hereweidealisetheinterstellarmediumasaho- mogeneousvolumecontainingprimarycosmicraysbeingacceleratedfromthethermalbackground mediumandsecondariesresultingfromfragmentationofprimarieshavinganegligibleabundance inthebackgroundmedium(cf.Hayakawa1969;Cowsik1980). The transport of these particles at large momenta (p > 10 GeV c 1 nucleus 1) is described − − bythesteady-statetransportequation(e.g.Schlickeiser1983).Suchatreatmentissuitabletoshort timescalesofdiffusiveandconvectiveprocessescomparedtothedynamicaltimescaleofthegalaxy (t 109years).Thisistrueinthecaseofhighenergeticparticles.Weassumeaspatialdiffusion dyn ≈ coefficientK(r)of1029 cm2 s 1 at p =1GeV,whichisslightlylargerthanthevaluemeasuredin − theMilkyWay(K(r)=1028cm2,(cf.Schlickeiser2002)becauseofdiffusiveprocessesbeingless effective in elliptical galaxies. Consequently we get for protons with TeV-energy a timescale of 108 years.Furthermore,thedynamicalageofthegalaxyhastobegreaterthanthetimescaleof ≈ sourcevariabilitytoobtainanappropriatedescription.Thisisusuallygiven,sincethesize ofthe accretionregionontothe centralblackhole isof the orderof a few light-daysso thata maximal variabilitytimescaleofsomedaysisassumed. At large momenta, spatial diffusion in turbulent magnetic fields dominates convectionin the galactic wind, so that we find a transport equation for the phase space density f(r,p) in spatial coordinatesrandinthemomentumcoordinatep: f + f +S(r,p)=0. (1) r p L L Thespatialoperator isdefinedby r L (r,p) K(r,p) (2) r L ≡∇ ∇ (cid:2) (cid:3) containing spatial diffusion with the spatial diffusion coefficient K(r,p) = K(r)κ(p), where κ(p) denotesthedimensionlessdependenceonthemomentumvariablepwithoutlossofgenerality.The momentumoperator ∂ ∂ 1 (r,p) p 2 p2D(p) p2p˙ p2p˙ (3) Lp ≡ − ∂p ∂p − gain− loss − τ " # c describes momentumdiffusion by second-orderFermi processes (D(p)), energy gain due to first order Fermiprocesses (p˙ ), as well as continuous(p˙ ) and catastrophic (τ ) momentumloss gain loss c processes.AsshowninLerche&Schlickeiser(1985),fully-ionizedparticlesheavierthanprotons havethesameFermiaccelerationratesasprotons,sohereinaftermomentummeansmomentumper 4 T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies nucleon.We areinterestedprimarilyinthebehaviourofthecosmicrayprimaryspectrum,sowe donottakesecondaryparticlesduetofragmentationofprimariesintoaccount.Ontheotherhand, weallowfragmentationofprimariesasagenerallossprocess. Alinkbetweenspatialandmomentumdiffusionprocessescanbeseenintherelationbetweenthe twodiffusioncoefficients C p2 D(r,p)= 1 , (4) K(r,p) whereC standsfortheproportionalityfactorbeingindependentofrand p.Thiscloseconnection 1 arisesfromthe samebasic physicalprocessbehindspatialandmomentumdiffusion:Protonsare scatteredinpitchangleduetothemagneticfieldsofMHDplasmawavescausingspatialdiffusion alongorderedmagneticfieldlines,whereascyclotrondampingoftheelectricfieldassociatedwith MHD waves affects diffusion in momentum space. For that reason it is necessary to solve this modelinspatialcoordinatesaswellasinmomentumcoordinatestogetanacceptabledescription oftransportprocessesinellipticalgalaxies. 3. ‘Scatteringtime’method Weusethe‘scatteringtime’methodproposedbySunyaev&Titarchuk(1980)togetanimportant classof exactanalyticalsolutionsofEq.(1)followingWang&Schlickeiser(1987). Thisimplies, thatthespatialandmomentumoperatorscanbeseparatedas (r,p)=h(p) (r) , (r,p)=g(r) (p). (5) r r p p L O L O Foreaseofexposition,thesourcefunctionS(r,p)isalsoaproductoftwoseparablefunctions,i. e., S(r,p)=q(r)Q(p). (6) AsanasidewenotethattherequirementEq.(5)istriviallyfulfilled,ifK(r)isconstant(K(r)=K ) 0 and p˙ , p˙ , as well as τ , are all independentof spatialvariables. Thuswe use the following gain loss e modelcontainingconstantfactorsa withn =1,2,3,4fortheproportionalityfactorsindependent n ofspatialandmomentumcoordinates.FirstwetakeD(p)= a p2/κ(p)todescribethemomentum 2 diffusioncoefficientsolelyinmomentumspace.Furthermoreweassume p˙ =a p/κ(p) (7) gain 1 tellingthatfirst-orderFermiaccelerationisrelatedtothe(momentumdependend)spatialdiffusion coefficientdueto MHD plasma-wave-scatteringinteractionswithinthe accelerationprocess.The continuouslossterm p˙ isindependentofspatialcoordinatesleadingto loss p˙ (p)= a ρ(p). (8) loss 3 − Similarly,weset τ (p)=a 1θ(p) (9) c −4 forthecatastrophiclosstimeduetofragmentation. Undertheseconditions,inadditiontoEq.(5)and(6),wecanfindtheformalmathematicalsolution ofEq.(1)asaconvolutionofthespatialandmomentumsolutionfunctionsT(r)andM(p)following deFreitasPacheco(1971): f(r,p)= ∞duT(r,u)M(p,u), (10) Z0 T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies 5 whereT(r,u)hastosatisfythegivenspatialboundaryconditions,and ∂T 1 = T (11) ∂u g(r)Or with = [K ] K ∆ , g(r)=1 (12) r 0 0 O ∇ ∇ ≡ andtheconditions T(r,u=0)=q(r)/g(r)=q(r) (13) T(r,u= )=0. (14) ∞ Here,M(p,u)hastosatisfythegivenspatialboundaryconditions,and ∂M 1 = M (15) ∂u h(p)Op with 1 ∂ a p4 ∂ a p3 a = 2 1 +a p2ρ(p) 4 ; h(p)=κ(p) (16) Op p2∂p κ(p) ∂p − κ(p) 3 − θ (p) " # 4 andtheconditions M(p,u=0)= Q(p)/h(p)= Q(p)/κ(p) (17) M(p,u= )=0. (18) ∞ Asaconsequenceoftheformalmathematicalsolution,wenotethatwehavetosolvetwopartial differentialEqs.(11)and(15)insteadofthemuchmorecomplicateddifferentialEq.(1). 4. Results 4.1.Spatialsolution ThemostconvenientwaytofindtheformalsolutionofEqs.(11)and(15)istostartwiththespatial problem. As can be seen from Eq.(12), the spatial operator is of Sturm-Liouville type (cf. r O Arfken&Weber2005)andthereforehasacompleteeigenfunctionsystemE(r).Asaconsequence, i thesolutionfunctionT(r,u)canbeexpandedinthisorthonormalsystemas T(r,u)= Ai(r)e−λ2iu. (19) i X HeretheA(r)aredefinedby i A(r)=αE(r), (20) i i i implyingthatthecoefficientsα weighteacheigenfunctionE(r).Theλ denotetheeigenvaluesof i i i implyingthespecialspatialgeometry. r O The shape of elliptical galaxies is adjusted to the cosmic ray transport Eq.(12) using prolate spheroidalcoordinatesastheyaredefinedbyAbramowitz&Stegun(1972): r +r r r ξ = 1 2 , η= 1− 2 (21) 2f 2f AscanbeseenfromFig.(1)r andr arethedistancestothefocioftheconfocalellipse,where2f 1 2 denotesthe distancebetweenthe two foci F and F . Additionally,we use the variableφ forthe 1 2 usualazimuthaldependencelikeinsphericalcoordinates.Thefollowingrelationsgivetherelation betweenthesecoordinatesandthesemi-majoraxisaandthesemi-minoraxisb,respectively: a= fξ , b= f ξ2 1. (22) − q 6 T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies Fig.1.Schematicalviewofanellipsewithitsfundamentalproperties. Thenumericalexcentricityehasadirectrelationshiptothecoordinateξvia e f/a=1/ξ. (23) ≡ Thevariableηisdefinedasη = cos θwithθtheanglebetweenthelineonwhichthefocilie,and anarbitrarypointontheellipse.Asaresultthevariablesaredefinedintherange ξ [1; [ , η [ 1;1] , φ [0;2π]. (24) ∈ ∞ ∈ − ∈ Fig.2. Left: Gray-shadedplane cuts ellipse leading to a cut view like the graph on the left-hand side. Right:Directionofunitvectorsofthevariablesξ,η,andφinprolatespheroidalcoordinates. FromWeisstein(1999). Figure (2) shows an illustration of the definition of the three spatial variables ξ, η, and φ. Becauseofthesedefinitions,wecanwriteEq.(12)as ∂T K ∂ ∂T ∂ ∂T = 0 (ξ2 1) + (1 η2) + ∂u f2(ξ2 η2) × ∂ξ − ∂ξ ∂η − ∂η − ( " # " # ξ2 η2 ∂2T + − . (25) (ξ2 1)(1 η2) ∂φ2 − − ) T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies 7 HereweusedtheLaplacianinprolatespheroidalcoordinates.Thegeneralsolutioncanbeobtained byconsecutiveseparationofvariables(seeAppendixA): T(ξ,η,φ,u) = R(1)(c,ξ) S(1)(c,η) cos(mφ) exp( k2u)= mn × mn × × − m,n X 1 = ∞′ (2m+r)!dmn − ξ2−1 m/2 Xm,n∞′rX=(02,1m+rr)!!dmn r π J× (cξξ2) ! × × r! r 2cξ n+21 × r=0,1 r X dˆmn(c)Pm (η) cos(mφ) exp( k2u) . (26) × r m+r × × − o Here the Pm (η) denotes associated Legendre functions of the first kind, order m + r, and the m+r J (cξ)denoteBesselfunctionsofthefirstkindandofordern+1.Thesumisextendedovereven n+1 2 2 valuesofrasindicatedbythemark .Thefactorcisgivenbyc= fk . ′ √K0 Todefinereasonableboundaryconditions,weassumea‘leakybox’model.Cosmicrayparticles aretrappedbydisorderedmagneticfieldswithintheconfinementregionofanellipticalgalaxy.In thistheyundergodiffusiveandconvectivemovements.Attheedgeofthebox,leakageoutofthe confinementareaispossible. As an illustrative example for spatial boundary conditions, we show the solution depending on a constant source function over the elliptical galaxy in Appendix B. To be more specific, we take a jet-like source function here. The jet points in the direction η (represented by a Dirac inj delta function) with a length scale chosen to be f for any choice of ξ being smaller than an max arbitrarymaximumvalueoftheconfinementregionξ .Particlesleakoutattheedgeofthisregion. c Such a boundaryconditionis knownin the literature as a ‘free-escape’condition.For a realistic assumptionwedecidetoletthejetendsmoothly(seethe‘Fermi’functioninEq.(29)).Weneglect anydependenceonφforanadequateillustration.Theseconditionsaretakenintoaccountby T(ξ=ξ ,η,φ,u)=0, (27) c byaperiodicalboundaryconditioninη T(ξ,η=1,φ,u)=T(ξ,η=+1,φ,u), (28) andby δ(ξ ξ )δ(η η) c inj T(ξ,η,u=0)=q − − . (29) 0 exp(4(f f )+1 max − FinallyaftersomecalculationsinwhichEq.(26)hastomatchtheboundaryconditionsEq.(27-29), (cid:2) (cid:3) wederivethegeneralsolution(cf.AppendixB): E (r) T(ξ,u)= ∞ ∞′ α 1 J y ξ P0(η)exp K0y2iru . (30) i,r ≡ i=1 r=0 ir √ξ r+12 irξc! r −ξc2f2  Theweightingfactorsare XX   α = q0P0r(ηinj) 1ξcξ3/2Jr+12 yirξξc dξ. (31) ir exp 4(f − fmax) +1 × R ξ2c2 Jr+3((cid:16)yir) 2(cid:17) 2 (cid:2) (cid:3) h i Herethey standsforzerosofJ (x).Thesumoverrisextendedoverevenvaluesofthisparam- ir r+1 2 eter.WeseethatthegeneralsolutionofEq.(25)withrespecttospatialboundaryconditionsindeed 8 T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies Fig.3.GraphicdemonstrationofthecosmicrayparticledensitygivenbythesolutionEq.(30)with the weighting factors (31). The cosmic ray particle density is normalised and given in arbitrary units.Asaneffectofchosencoordinatesonly‘onehalf’ofthegalaxyisvisible.Forillustrationwe plottedT(f,η,u=0)withaconstantξ 1.2specifyinganE4ellipticalgalaxy. ≡ hasthe formoftheeigenfunctionexpansionEq.(19)with Eq.(20). ThissolutionisshowninFig. (3)withrespectto100spatialeigenfunctions(i = 10,r = 18).Thejetisresponsibleforthe max max cosmicrayparticlesdistributedoverthewholegalaxydueto diffusiveprocesses.Itis broadened withalargerdistancetothecentre.Thiseffectiscausedbythechosengeometry,whereastheloss ofmagneticcollimationinrealastrophysicalsourcescanprovidethis.Toillustratetheshapeofan ellipticalgalaxyweplottedT(f,η,u= 0)withaconstantξ 1.2specifyinganE4-galaxy.Using ≡ a more complicated source function, a better physical description of particle distribution within ellipticalgalaxiescanbeobtained. 4.2.Consistencychecksoftheformalspatialsolution Togetabetterunderstandingofourmodel,weprovetheformalmathematicalsolution(Eq.(26)) ofthespatialcosmicraytransportequation.Ourdiscussionisrelatedtothesolutionfoundinthe illustrativeexampleinAppendixB,butcansimilarlydonewithEq.(26): T(ξ,u)= ∞ α 1 J y ξ exp K0y2i u (32) i=1 i √ξ 12 iξc! −ξc2f2  withtheweightingfactors X   q ξgξ3/2J y ξ dξ α = 0 1 21 iξc . (33) i R ξc2 J (y(cid:16)) 2 (cid:17) 2 3 i 2 Hereweusedperiodicalboundaryconditionsforhηandiφ T(ξ,η= 1,φ,u)=T(ξ,η=+1,φ,u), (34) − T(ξ,η,φ=2π,u)=T(ξ,η,φ=0,u), (35) and T(ξ,η,φ,u=0)=q Θ(ξ ξ). (36) 0 g − T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies 9 First,thissolutionhastoaccomplishthegivenspatialboundaryconditions.AssuggestedinEq.(36) we useda constantsourcefunctionoverthe whole size of the galaxyin orderto lose all angular dependencies. This behaviour is caused by the source function not having any dependence in η and φ, but also due to the periodic boundary conditions chosen for these variables. Such an ef- fectcanalso be seen ina sphericalor disc geometry.To the sphericalgeometryas performedby Schlickeiseretal.(1987),weaddedangulardependenciesandaconstantsourcefunctionoverthe galaxyasanexample.Theweightingfactorsofthegeneralsolutionfunctionsturnouttodisappear inanycaseexceptfortheangularseparationconstantsbeingzero(theangularsolutionfunctions aresphericalharmonicsinthiscase),whichmeansthatthereisnodependenceonthesevariables asitisexpected. Fig.4.Normalisedweightingfactorsα dependentonthenumberofzerosy inEq.(32) i i Second,weshowthatthesumofsolutionfunctions(cf.Eq.(26)),togetherwiththeweighting factorsinadditiontothegivenspatialboundaryconditionsconverges.Fortheillustrativeexample inAppendixB,thenormalisedexpansioncoefficientsα areshowninFig.(4).Toobtainapplicable i resultsit is essentialto includeonlythe firstfew onesdependingon the requestedaccuracy.The resulting solution function is shown in Fig.(5). In the special case of a constantsource function, the solution reproducesthe boundarycondition θ(ξ ξ) for the variable ξ. We used ξ = 4 for g g − illustration.Ifwetakemanyeigenfunctionsintoaccount,weseeatthediscontinuitypointsξ = 0 andξ =ξ =4anoscillatoryphenomenon(Gibbsphenomenon).Butinthiscaseaclosersolution g forthegivenboundaryconditionisobtained. Inanalyticalcalculations,itisacommonassumptiontoincludeonlythefirstspatialeigenvalue λ . This one is associated with the longest escape timescale being the most important one for 1 modellingescapeofparticlesoutofthegalaxy.Fornumericalpurposes,thecomputingtimegives anupperlimittothepossiblenumberofeigenvalues.Furthermore,thespatialsolutionasperformed in this paper has to match the formalsolution for a spherical geometrywithin the limit of small ellipticity(e 0).Schlickeiseretal.(1987)foundasthespatialsolution → T(R,u)= ∞ c 1 J y R exp K02y2mu , (37) m=1 m √R 12 mR1! − R21  X   10 T.HeinandF.Spanier:Cosmicraytransportinellipticalgalaxies Fig.5.SpatialsolutionEq.(32)inadditionwith weightingfactorsα (Eq.(20))asafunctionofξ. i As an illustration, we putξ = 4. For the solution representedby the solid line we included200 g eigenvalues,whereasinthedashedsolutiononly10eigenvaluesaretakenintoaccount. whichalreadyshowsaffinityto oursolutionEq.(32).They denotesthe zerosof J (x) (herewe m 1 2 corrected Schlickeiseretal. (1987)) and R describes the edge of the galaxy. Generally we can 1 writeforbothsolutions: T(X,u)= ∞ αZ(cX)exp( λ2u) (38) i i i − i i=1 X TheasymptoticbehaviourofthesolutionEq.(32)iswithZ(cX) ξ 1/2J (cξ) i − 1 i ≡ 2 Z(cξ) ciξ→∞ 1 cos cξ 1π . (39) i −−−−−→ cξ i − 2 i ! Thelimitcξ satisfiesasphericalsymmetrywithanumericalexcentricityequaltozero(cf. i → ∞ Eq.(23)).Furthermorewiththislimit,thesemi-majoraxiscξgoestoinfinity.Performingthesame i limittoEq.(37)withZ(cX) R 1/2J (cR),weget i − 1 i ≡ 2 Z(cR) ciR→∞ 1 cos cR 1π , (40) i i −−−−−→ cR − 2 i ! which is equal to Eq.(39). As a consequencewe showed that our solution functionsembodythe sphericalgeometrywithinthelimitofnumericalexcentricityequaltozero.Itisalsostraightforward toshowthattheweightingfactorshavethesamestructureasthoseinSchlickeiseretal.(1987)so thatthegeneralsolutioniscorrect. 4.3.Momentumsolution Fortheformalmomentumsolution,itisnecessarytohaveacloserlookatthespatialsolution.As notedabove,theeigenfunctionexpansionEq.(19),inadditiontoEq.(20),isindeedthebestwayto solve the spatial transportEq.(11). Inserting this expansioninto the convolutionEq.(10), we can write f(r,p)= A(r)R(p) (41) i i i X with Ri(p) ∞duM(p,u)e−λ2iu. (42) ≡ Z0 ConsequentlythemomentumsolutionR(p)obeystheordinarydifferentialequation i R(p) λ2g(p)R(p)= Q(p), (43) Op i − i i −

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.