ebook img

Analytical Methods | Microscopy (Microstructure of Milk Constituents and Products) PDF

508 Pages·32.139 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytical Methods | Microscopy (Microstructure of Milk Constituents and Products)

Structure and ProPertieS of fat cryStal networkS S e c o n d e d i t i o n STRUCTURE AND PROPERTIES OF FAT CRYSTAL NETWORKS S E C O N D E D I T I O N Alejandro G. Marangoni Leendert H. Wesdorp Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2013 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20120803 International Standard Book Number-13: 978-1-4398-8764-6 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information stor- age or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro- vides licenses and registration for a variety of users. For organizations that have been granted a pho- tocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Introduction...............................................................................................................xv Chapter 1 Crystallography.and.Polymorphism......................................................1 1.1. .Crystal.Lattices...........................................................................1 1.2. .Lattices.and.Unit.Cells...............................................................1 1.3. .Miller.Indices.............................................................................4 1.4. .Powder.X-Ray.Diffraction.and.Bragg’s.Law..............................5 1.5. .Typical.Powder.XRD.Setup.......................................................7 1.6. .Indexing.Reflections...................................................................9 1.7. .Crystallographic.Structure.of.Fats...........................................10 1.7.1. .Single.Crystal.Structures.............................................10 1.7.2. Polymorphism.............................................................13 1.7.2.1. Energetics.of.Crystallization. as It Relates.to.Polymorphism.....................19 1.7.2.2. .Subcells.and.Subcell.Packing......................20 References...........................................................................................24 Chapter 2 Nucleation.and.Crystalline.Growth.Kinetics......................................27 2.1. Introduction.to.Crystallization.................................................27 2.1.1. Nucleation.Overview...................................................27 2.1.2. Quantification.of.the.Driving.Force. for Crystallization.......................................................29 2.1.3. Better.Understanding.the.Chemical.Potential.............31 2.2. Crystallization.Kinetics............................................................35 2.2.1. Nucleation....................................................................35 2.2.1.1. Isothermal.Steady-State.Nucleation. Theory..........................................................35 2.2.1.2. Theory.of.Reaction.Rates............................38 2.2.1.3. Determination.of.the.Free.Energy. of Nucleation.for.an.Isothermal.Process......40 2.2.1.4. Estimates.of.ΔHf.and.Vms..............................42 2.2.1.5. Metastability.and.Free.Energy. of Nucleation................................................43 2.2.2. Isothermal.Crystal.Growth—The.Avrami.Model.......43 2.2.2.1. Derivation.of.the.Model...............................45 2.2.2.2. Use.of.the.Model..........................................54 v vi Contents 2.3. .Isothermal.Crystallization.Kinetics.and.Microstructure.........57 2.3.1. Relationship.between.Isothermal.Nucleation. Kinetics.and.the.Fractal.Dimension.of.a.Fractal. Cluster.........................................................................57 2.3.2. Relationship.between.Fractal.Cluster Size. and the Isothermal.Free.Energy.of Nucleation...........61 2.3.3. Fractal.Growth.of.Milk.Fat.Crystals.Is. Unaffected.by.Microstructural.Confinement..............65 2.3.4. Comparison.of.Experimental.Techniques.Used. in.Lipid.Crystallization.Studies..................................70 2.4. Nonisothermal.Nucleation.of.Fats............................................79 2.4.1. Isothermal,.Near-Isothermal,.and.Nonisothermal. Processes.....................................................................79 2.4.2. Formulation.of.the.Time-Dependent. Supercooling.Parameter..............................................80 2.4.3. Probabilistic.Approach.to Modeling. Nonisothermal.Nucleation.Kinetics............................82 2.4.4. Clustering.Energy.for.Nonisothermal.Nucleation.......83 2.4.5. Special.Case.When.β.Is.Very.Small...........................84 2.4.6. Nonisothermal.Nucleation.of.Five.Commercial. Fats—A.Practical.Example.of.This.Approach............85 2.4.6.1. Materials.and.Methods.Used.......................85 2.4.6.2. Results..........................................................87 References...........................................................................................96 Chapter 3 Intermolecular.Forces.in.Triacylglycerol.Particles.and.Oils.............101 David A. Pink 3.1. .Introduction............................................................................101 3.2. .Van.der.Waals.Interactions.....................................................102 3.3. .Mean.Field.Models.................................................................104 3.3.1. .Lifshitz.Theory.and.the.Coupled.Dipole.Method.....104 3.3.2. .The.Lennard.Jones.6–12.Potential............................108 3.3.3. .Fractal.Model.and.Semi-Classical.Model.................110 3.3.4. .Coarse-Grained.Approaches—1...............................112 3.3.4.1. Example:.Aggregation.of. Triacylglycerol.CNPs.................................112 3.3.4.2. Application:.Oils.in.Confined. Nanospaces..............................................114 3.3.5. .Coarse-Grained.Approaches—2...............................116 3.4. .Van.der.Waals.Interactions.and.Rheological.Characteristics....117 3.5. .X-Ray.Scattering.and.Fractal.Dimensions.............................118 3.6. .Conclusion..............................................................................119 Acknowledgments.............................................................................119 References.........................................................................................119 Contents vii Chapter 4 Rheology.of.Fats...............................................................................125 Alejandro G. Marangoni and Suresh S. Narine 4.1. .Hooke’s.Law...........................................................................125 4.2. .Stress–Strain.Relationships.and.Elastic.................................125 4.2.1. .Shear.and.Bulk.Moduli.............................................125 4.3. .Types.of.Stresses.and.Corresponding.....................................127 4.3.1. .Definitions.of.Moduli................................................127 4.4. .Elastic.Behavior......................................................................129 4.4.1. .Structural.Theory.of.Elasticity..................................129 4.5. .Yield.Value.from.Constant.Force.Cone..................................139 4.5.1. .Penetrometry.Measurements.....................................139 4.6. .Rheology.of.Liquids...............................................................141 4.6.1. .Viscosity....................................................................141 4.7. .Types.of.Fluid.Flow................................................................142 4.7.1. .Ideal,.Newtonian.Behavior........................................142 4.7.2. .Nonideal,.Non-Newtonian.Behavior.........................142 4.7.2.1. .Time-Independent.Fluids...........................143 4.7.2.2. .Time-Dependent.Fluids.............................144 4.8. .Modeling.Flow.Behavior........................................................144 References.........................................................................................145 Chapter 5 Viscoelastic.Properties.of.Fats..........................................................147 5.1. Creep.and.Recovery/Stress.Relaxation...................................148 5.1.1. Kelvin–Voigt.Solid....................................................149 5.1.2. Maxwell.Fluid...........................................................150 5.1.3. Burger.Model............................................................152 5.1.4. Real.Viscoelastic.Materials.......................................154 5.1.5. Creep–Recovery.Studies.of.Fats...............................155 References.........................................................................................158 Chapter 6 Dynamic.Rheological.Studies.of.Fats...............................................159 6.1. Introduction............................................................................159 6.1.1. Theoretical.Considerations........................................160 6.1.1.1. Hookean.Solids.(Springs)..........................161 6.1.1.2. Newtonian.Fluids.(Dashpots)....................162 6.1.1.3. Kelvin–Voigt.Viscoelastic.Solid................163 6.1.1.4. Maxwell.Viscoelastic.Fluid.......................164 6.1.1.5. Real.Viscoelastic.Materials— Generalization.of.the.Model......................166 6.1.2. Complex.Modulus.....................................................167 6.1.3. Complex.Viscosity....................................................168 6.1.4. Some.Basic.Considerations.for.Rheological. Studies.of.Fats.under.Dynamic.Conditions...............169 viii Contents Chapter 7 Nanostructure.and.Microstructure.of.Fats........................................173 Alejandro G. Marangoni, Suresh S. Narine, Nuria C. Acevedo, and Dongming Tang 7.1. Introduction............................................................................173 7.2. Mesoscale.and.Nanoscale.in.Fat.Crystal.Networks...............174 7.2.1. Fractals......................................................................180 7.2.2. Scaling.Theory.as.Applied.to.Colloidal.Gels...........186 7.2.3. Elastic.Properties.of.Colloidal.Gels:.Exploiting. the.Fractal.Nature.of.the.Aggregates........................189 7.2.4. Application.of.Scaling.Theory Developed. for Colloidal Gels.to.Fat.Crystal.Networks...............197 7.2.5. Network.Models........................................................201 7.3. Where.Lies.the.Fractality.in.Fat.Crystal.Networks?..............203 7.3.1. Structural.Model.of.the.Fat.Crystal.Network............204 7.3.2. Characterizing.Microstructure..................................205 7.3.3. Fractality...................................................................209 7.3.4. Weak.Link.Revisited.................................................211 7.3.5. Relating.the.Particle.Volume.Fraction.to.the. Solid.Fat.Content.......................................................213 7.3.6. Rheology...................................................................214 7.3.7. Physical.Significance.of.Fractal.Dimension..............215 7.3.8. Other.Methods.for.the.Determination.of.the. Fractal.Dimension.....................................................221 7.3.8.1. Fractal.Dimension.from.Oil. Permeability.Measurements......................221 7.3.8.2. Fractal.Dimensions.by.Light.Scattering.....223 7.3.8.3. Thermomechanical.Method.for. Determining.Fractal.Dimensions..............224 7.3.8.4. Fractal.Dimension.from.the.Stress.at. the.Limit.of Linearity: Fats.Are.in.the. Weak-Link.Rheological.Regime...............225 7.3.9. Modified.Fractal.Model............................................225 7.4. Conclusions.............................................................................226 References.........................................................................................227 Chapter 8 Yield.Stress.and.Elastic.Modulus.of.a.Fat.Crystal.Network.............233 8.1. Model......................................................................................233 References.........................................................................................240 Chapter 9 Liquid–Multiple.Solid.Phase.Equilibria.in.Fats................................241 Leendert H. Wesdorp, J.A. van Meeteren, S. de Jong, R. van der Giessen, P. Overbosch, P.A.M. Grootscholten, M. Struik, E. Royers, A. Don, Th. de Loos, C. Peters, and I. Gandasasmita Contents ix 9.1. .Introduction.and.Problem.Definition......................................241 9.1.1. .Solid–Liquid.Phase.Equilibria.and.Fats....................241 9.1.2. .Triacylglycerols:.Nomenclature................................243 9.1.3. .Triacylglycerols:.Polymorphism................................244 9.1.3.1. .Basic.Polymorphic.Forms.of.TAGs...........244 9.1.3.2. .Submodifications.......................................246 9.1.3.3. .Stability......................................................248 9.1.4. Methods.for.Predicting.Solid.Phase.Composition. and.Quantity..............................................................248 9.1.4.1. Linear.Programming/Multiple. Regression..................................................249 9.1.4.2. .Excess.Contribution.Method.....................249 9.1.4.3. TAGs.Inductors.de.Crystallization. Method.......................................................250 9.1.4.4. .Classification.of.TAGs.Method.................250 9.1.4.5. .Other.TAG-Based.Methods.......................251 9.1.5. .Conclusion.................................................................251 9.2. .Approach.to.the.Problem........................................................251 9.2.1. .Solid–Liquid.Equilibrium.Thermodynamics............251 9.2.2. .Kinetics.of.Crystallization........................................253 9.2.2.1. Polymorphism.and.Kinetics.of. Crystallization...........................................253 9.2.2.2. .Shell.Formation.........................................254 9.2.2.3. .Poor.Crystallinity......................................254 9.2.3. .Conclusion.and.Approach.to.the.Problem.................255 9.3. .Flash.Calculations..................................................................256 9.3.1. .Introduction...............................................................256 9.3.2. .Initial.Estimates.and.Stability.Tests..........................257 9.3.2.1. .Splitting.Component.Method....................258 9.3.2.2. Michelsen’s.Tangent.Plane.Criterion. Method.......................................................259 9.3.3. .Iterating.Procedures..................................................262 9.3.3.1. .Direct.Substitution.....................................262 9.3.3.2. .Gibbs.Free.Energy.Minimization..............263 9.3.3.3. .Removal.of.Phases.....................................267 9.3.4. Comparing.Methods..................................................268 9.3.4.1. .Criteria.......................................................268 9.3.4.2. .Test.Results................................................269 9.3.5. Calculation.of.Differential.Scanning.Calorimetry. Curves.......................................................................270 9.3.6. .Conclusion.................................................................271 9.4. .Pure.Component.Properties...................................................272 9.4.1. .Literature.Data.and.Correlations...............................272 9.4.1.1. Correlating.Enthalpy.of.Fusion. and Melting.Points.of.Lipids.....................272 9.4.1.2. .Data.and.Correlations.for.TAGs................274 x Contents 9.4.2. .Experimental.Work...................................................276 9.4.3. .Development.of.the.Correlation................................277 9.4.3.1. .Saturated.TAGs..........................................277 9.4.3.2. .Unsaturated.TAGs.....................................283 9.4.4. .Conclusion.................................................................286 9.5. .Mixing.Behavior.in.Liquid.State............................................287 9.5.1. .Literature...................................................................287 9.5.2. .Model.Calculations...................................................288 9.5.3. .Experiments..............................................................289 9.5.3.1. Method.for.Determination.of.Activity. Coefficients.of.Mixtures.of.Nonvolatile. Liquids.......................................................289 9.5.3.2. .Experimental.Work....................................292 9.5.3.3. .Results.and.Discussion..............................293 9.5.4. .Conclusion.................................................................298 9.6. .Mixing.Behavior.in.the.α-Modification.................................298 9.6.1. Evidence.for.Partial.Retained.Chain.Mobility. in the.α-Modification.................................................298 9.6.1.1. .Supercooling.of.the.α-Modification...........300 9.6.1.2. Excess.Gibbs.Energy.in.the. α-Modification...........................................301 9.6.2. Comparison.of.Experimental.and.Calculated. α-Melting.Ranges......................................................301 9.6.2.1. .Experimental.Procedure............................301 9.6.2.2. .Calculations...............................................305 9.6.2.3. .Results........................................................305 9.6.3. .Conclusion.................................................................306 9.7. .Mixing.Behavior.in.the.β′-.and.β-Modifications....................307 9.7.1. .Excess.Gibbs.Energy.................................................308 9.7.1.1. .Excess.Gibbs.Energy.Models....................308 9.7.1.2. .Regular.or.Athermal?................................310 9.7.1.3. .Phase.Diagram...........................................310 9.7.2. .Experimental.Phase.Diagrams.of.TAGs...................313 9.7.2.1. .Measuring.Phase.Diagrams.......................313 9.7.2.2. .Literature.Overview...................................316 9.7.2.3. .Fitting.Experimental.Phase.Diagrams.......318 9.7.2.4. .Saturated.TAGs..........................................318 9.7.2.5. .Saturated.TAGs.+.Trans-TAGs..................324 9.7.2.6. Saturated.TAGs.+.Mono-.and. Di-Unsaturated.TAGs................................325 9.7.2.7. .Unsaturated.TAGs.....................................327 9.7.2.8. .Summarizing.............................................331 9.7.3. .Alternative.to.Phase.Diagram.Determination...........333 9.7.3.1. .How.to.Proceed?........................................333 9.7.3.2. .Formulation.of.an.Alternative.Method......336

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.