ebook img

Analytical mechanics of aerospace systems PDF

588 Pages·2002·6.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytical mechanics of aerospace systems

A M NALYTICAL ECHANICS of A S EROSPACE YSTEMS Hanspeter Schaub and John L. Junkins January 1, 2002 Contents Preface ix I BASIC MECHANICS 1 1 Particle Kinematics 3 1.1 ParticlePositionDescription . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Basic Geometry. . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Cylindrical and Spherical Coordinate Systems . . . . . . . 6 1.2 Vector Di(cid:11)erentiation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Angular Velocity Vector . . . . . . . . . . . . . . . . . . . 8 1.2.2 Rotation about a Fixed Axis . . . . . . . . . . . . . . . . 10 1.2.3 TransportTheorem . . . . . . . . . . . . . . . . . . . . . 11 1.2.4 ParticleKinematics with MovingFrames . . . . . . . . . 15 2 Newtonian Mechanics 25 2.1 Newton’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Single Particle Dynamics. . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Constant Force . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 Time-VaryingForce . . . . . . . . . . . . . . . . . . . . . 32 2.2.3 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.4 Linear Momentum . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Angular Momentum . . . . . . . . . . . . . . . . . . . . . 35 2.3 Dynamics of a System of Particles . . . . . . . . . . . . . . . . . 38 2.3.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . 38 2.3.2 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3.3 Linear Momentum . . . . . . . . . . . . . . . . . . . . . . 43 2.3.4 Angular Momentum . . . . . . . . . . . . . . . . . . . . . 45 2.4 Dynamics of a ContinuousSystem . . . . . . . . . . . . . . . . . 47 2.4.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . 47 2.4.2 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4.3 Linear Momentum . . . . . . . . . . . . . . . . . . . . . . 50 2.4.4 Angular Momentum . . . . . . . . . . . . . . . . . . . . . 51 2.5 The RocketProblem . . . . . . . . . . . . . . . . . . . . . . . . . 52 iii iv CONTENTS 3 Rigid Body Kinematics 63 3.1 Direction Cosine Matrix . . . . . . . . . . . . . . . . . . . . . . . 64 3.2 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Principal Rotation Vector . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Euler Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5 Classical Rodrigues Parameters . . . . . . . . . . . . . . . . . . . 91 3.6 Modi(cid:12)ed Rodrigues Parameters . . . . . . . . . . . . . . . . . . . 96 3.7 Other Attitude Parameters . . . . . . . . . . . . . . . . . . . . . 103 3.7.1 Stereographic OrientationParameters . . . . . . . . . . . 103 3.7.2 Higher Order Rodrigues Parameters . . . . . . . . . . . . 105 3.7.3 The (w,z) Coordinates . . . . . . . . . . . . . . . . . . . . 106 3.7.4 Cayley-KleinParameters . . . . . . . . . . . . . . . . . . 107 3.8 Homogeneous Transformations . . . . . . . . . . . . . . . . . . . 107 4 Eulerian Mechanics 115 4.1 Rigid Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 115 4.1.1 Angular Momentum . . . . . . . . . . . . . . . . . . . . . 115 4.1.2 Inertia Matrix Properties . . . . . . . . . . . . . . . . . . 118 4.1.3 Euler’s Rotational Equations of Motion . . . . . . . . . . 123 4.1.4 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2 Torque-FreeRigid Body Rotation . . . . . . . . . . . . . . . . . . 128 4.2.1 Energy and Momentum Integrals . . . . . . . . . . . . . . 128 4.2.2 General Free Rigid Body Motion . . . . . . . . . . . . . . 133 4.2.3 Axisymmetric Rigid Body Motion . . . . . . . . . . . . . 135 4.3 Momentum ExchangeDevices . . . . . . . . . . . . . . . . . . . . 137 4.3.1 Spacecraft with Single VSCMG . . . . . . . . . . . . . . . 138 4.3.2 Spacecraft with Multiple VSCMGs . . . . . . . . . . . . . 143 4.4 GravityGradient Satellite . . . . . . . . . . . . . . . . . . . . . . 145 4.4.1 GravityGradient Torque . . . . . . . . . . . . . . . . . . 145 4.4.2 Rotational - TranslationalMotion Coupling . . . . . . . . 148 4.4.3 Small Departure Motion about Equilibrium Attitudes . . 149 5 Generalized Methods of Analytical Dynamics 159 5.1 Generalized Coordinates . . . . . . . . . . . . . . . . . . . . . . . 159 5.2 D’Alembert’s Principle . . . . . . . . . . . . . . . . . . . . . . . . 162 5.2.1 Virtual Displacements and Virtual Work. . . . . . . . . . 163 5.2.2 Classical Developmentsof D’Alembert’s Principle . . . . . 164 5.2.3 Holonomic Constraints . . . . . . . . . . . . . . . . . . . . 170 5.2.4 Newtonian Constrained Dynamics of N Particles . . . . . 177 5.2.5 LagrangeMultiplier Rule for Constrained Optimization . 178 5.3 LagrangianDynamics . . . . . . . . . . . . . . . . . . . . . . . . 182 5.3.1 Minimal Coordinate Systems and Unconstrained Motion . 183 5.3.2 Lagrange’sEquations for ConservativeForces . . . . . . . 187 5.3.3 Redundant Coordinate Systems and Constrained Motion 190 5.3.4 Vector-MatrixFormofthe LagrangianEquationsofMotion195 CONTENTS v 6 Advanced Methods of Analytical Dynamics 203 6.1 The Hamiltonian Function . . . . . . . . . . . . . . . . . . . . . . 203 6.1.1 Some Special Properties of The Hamiltonian . . . . . . . 203 6.1.2 RelationshipoftheHamiltoniantoTotalEnergyandWork Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.1.3 Hamilton’s Canonical Equations . . . . . . . . . . . . . . 203 6.1.4 Hamilton’s Principal Function and the Hamilton-Jacobi Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.2 Hamilton’s Principles. . . . . . . . . . . . . . . . . . . . . . . . . 203 6.2.1 VariationalCalculus Fundamentals . . . . . . . . . . . . . 204 6.2.2 Path Variations versusVirtual Displacements . . . . . . 204 6.2.3 Hamilton’s Principles from D’Alembert’s Principle . . . . 204 6.3 Dynamics of Distributed ParameterSystems. . . . . . . . . . . . 204 6.3.1 ElementaryDPS: Newton-Euler Methods . . . . . . . . . 204 6.3.2 Energy Functions for Elastic Rods and Beams. . . . . . . 204 6.3.3 Hamilton’s Principle Applied for DPS . . . . . . . . . . . 204 6.3.4 Generalized Lagrange’sEquations for Multi-Body DPS . 204 7 Nonlinear Spacecraft Stability and Control 205 7.1 Nonlinear Stability Analysis . . . . . . . . . . . . . . . . . . . . . 206 7.1.1 Stability De(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . 206 7.1.2 Linearization of Dynamical Systems . . . . . . . . . . . . 210 7.1.3 Lyapunov’sDirect Method . . . . . . . . . . . . . . . . . 212 7.2 Generating LyapunovFunctions. . . . . . . . . . . . . . . . . . . 219 7.2.1 Elemental Velocity-BasedLyapunovFunctions . . . . . . 221 7.2.2 Elemental Position-BasedLyapunovFunctions . . . . . . 227 7.3 Nonlinear FeedbackControlLaws . . . . . . . . . . . . . . . . . . 233 7.3.1 Unconstrained ControlLaw . . . . . . . . . . . . . . . . . 233 7.3.2 Asymptotic Stability Analysis . . . . . . . . . . . . . . . . 236 7.3.3 FeedbackGain Selection . . . . . . . . . . . . . . . . . . . 242 7.4 LyapunovOptimal Control Laws . . . . . . . . . . . . . . . . . . 247 7.5 Linear Closed-Loop Dynamics . . . . . . . . . . . . . . . . . . . . 253 7.6 Reaction Wheel ControlDevices . . . . . . . . . . . . . . . . . . 258 7.7 Variable Speed ControlMoment Gyroscopes . . . . . . . . . . . . 260 7.7.1 ControlLaw . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.7.2 VelocityBased Steering Law . . . . . . . . . . . . . . . . 264 7.7.3 VSCMG Null Motion . . . . . . . . . . . . . . . . . . . . 269 II CELESTIAL MECHANICS 283 8 Classical Two-Body Problem 285 8.1 Geometry of Conic Sections . . . . . . . . . . . . . . . . . . . . . 286 8.2 Relative Two-BodyEquations of Motion . . . . . . . . . . . . . . 294 8.3 Fundamental Integrals . . . . . . . . . . . . . . . . . . . . . . . . 296 8.3.1 Conservationof Angular Momentum . . . . . . . . . . . . 296 vi CONTENTS 8.3.2 The EccentricityVector Integral . . . . . . . . . . . . . . 297 8.3.3 Conservationof Energy . . . . . . . . . . . . . . . . . . . 300 8.4 Classical Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 306 8.4.1 Kepler’s Equation . . . . . . . . . . . . . . . . . . . . . . 307 8.4.2 Orbit Elements . . . . . . . . . . . . . . . . . . . . . . . . 310 8.4.3 Lagrange/GibbsF and G Solution . . . . . . . . . . . . . 316 9 Restricted Three-Body Problem 325 9.1 Lagrange’sThree-Body Solution . . . . . . . . . . . . . . . . . . 326 9.1.1 General Conic Solutions . . . . . . . . . . . . . . . . . . . 326 9.1.2 Circular Orbits . . . . . . . . . . . . . . . . . . . . . . . . 335 9.2 Circular Restricted Three-Body Problem. . . . . . . . . . . . . . 339 9.2.1 Jacobi Integral . . . . . . . . . . . . . . . . . . . . . . . . 341 9.2.2 Zero Relative Velocity Surfaces . . . . . . . . . . . . . . . 346 9.2.3 LagrangeLibration PointStability . . . . . . . . . . . . . 353 9.3 Periodic Stationary Orbits . . . . . . . . . . . . . . . . . . . . . . 357 9.4 The Disturbing Function . . . . . . . . . . . . . . . . . . . . . . . 358 10 Gravitational Potential Field Models 365 10.1 GravitationalPotentialof Finite Bodies . . . . . . . . . . . . . . 366 10.2 MacCullagh’s Approximation . . . . . . . . . . . . . . . . . . . . 369 10.3 Spherical Harmonic GravityPotential . . . . . . . . . . . . . . . 372 10.4 Multi-Body GravitationalAcceleration . . . . . . . . . . . . . . . 381 10.5 Spheres of GravitationalIn(cid:13)uence . . . . . . . . . . . . . . . . . 383 11 Perturbation Methods 389 11.1 Encke’sMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 11.2 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . 392 11.2.1 General Methodology . . . . . . . . . . . . . . . . . . . . 393 11.2.2 LagrangianBrackets . . . . . . . . . . . . . . . . . . . . . 395 11.2.3 Lagrange’sPlanetary Equations . . . . . . . . . . . . . . 401 11.2.4 PoissonBrackets . . . . . . . . . . . . . . . . . . . . . . . 408 11.2.5 Gauss’ VariationalEquations . . . . . . . . . . . . . . . . 415 11.3 State Transition and Sensitivity Matrix . . . . . . . . . . . . . . 417 11.3.1 Linear Dynamic Systems . . . . . . . . . . . . . . . . . . 418 11.3.2 Nonlinear Dynamic Systems . . . . . . . . . . . . . . . . . 422 11.3.3 Symplectic State TransitionMatrix. . . . . . . . . . . . . 425 11.3.4 State TransitionMatrix of Keplerian Motion . . . . . . . 427 12 Transfer Orbits 433 12.1 Minimum Energy Orbit . . . . . . . . . . . . . . . . . . . . . . . 434 12.2 The Hohmann TransferOrbit . . . . . . . . . . . . . . . . . . . . 437 12.3 Lambert’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 442 12.3.1 General Problem Solution . . . . . . . . . . . . . . . . . . 443 12.3.2 ElegantVelocity Properties . . . . . . . . . . . . . . . . . 447 12.4 Rotating the Orbit Plane . . . . . . . . . . . . . . . . . . . . . . 450 CONTENTS vii 12.5 Patched-ConicOrbit Solution . . . . . . . . . . . . . . . . . . . . 455 12.5.1 Establishing the Heliocentric Departure Velocity . . . . . 457 12.5.2 Escaping the Departure Planet’s Sphere of In(cid:13)uence . . . 461 12.5.3 Enterthe Target Planet’s Sphere of In(cid:13)uence . . . . . . . 467 12.5.4 Planetary Fly-By’s . . . . . . . . . . . . . . . . . . . . . . 472 13 Spacecraft Formation Flying 477 13.1 General Relative Orbit Description . . . . . . . . . . . . . . . . . 479 13.2 Cartesian Coordinate Description . . . . . . . . . . . . . . . . . . 480 13.2.1 Clohessy-Wiltshire Equations . . . . . . . . . . . . . . . . 481 13.2.2 Closed Relative Orbits in the Hill Reference Frame . . . . 484 13.3 Orbit Element Di(cid:11)erence Description . . . . . . . . . . . . . . . . 487 13.3.1 LinearMappingBetweenHillFrameCoordinatesandOr- bit Element Di(cid:11)erences . . . . . . . . . . . . . . . . . . . 489 13.3.2 Bounded Relative Motion Constraint . . . . . . . . . . . . 495 13.4 Relative Motion State Transition Matrix . . . . . . . . . . . . . . 497 13.5 Linearized Relative Orbit Motion . . . . . . . . . . . . . . . . . . 502 13.5.1 General Elliptic Orbits . . . . . . . . . . . . . . . . . . . . 502 13.5.2 Chief Orbits with Small Eccentricity . . . . . . . . . . . . 506 13.5.3 Near-CircularChief Orbit . . . . . . . . . . . . . . . . . . 508 13.6 J2-InvariantRelative Orbits . . . . . . . . . . . . . . . . . . . . . 511 13.6.1 Ideal Constraints . . . . . . . . . . . . . . . . . . . . . . . 512 13.6.2 Energy Levels between J2-InvariantRelative Orbits . . . 519 13.6.3 ConstraintRelaxation Near PolarOrbits. . . . . . . . . . 520 13.6.4 Near-CircularChief Orbit . . . . . . . . . . . . . . . . . . 524 13.6.5 Relative Argument of Perigeeand Mean Anomaly Drift . 526 13.6.6 Fuel Consumption Prediction . . . . . . . . . . . . . . . . 528 13.7 Relative Orbit Control Methods. . . . . . . . . . . . . . . . . . . 531 13.7.1 Mean Orbit Element ContinuousFeedbackControlLaws 532 13.7.2 Cartesian Coordinate ContinuousFeedbackControlLaw . 539 13.7.3 Impulsive FeedbackControlLaw . . . . . . . . . . . . . . 542 13.7.4 Hybrid FeedbackControl Law. . . . . . . . . . . . . . . . 546 APPENDIX A 553 APPENDIX B 557 APPENDIX C 559 APPENDIX D 563 APPENDIX E 565 APPENDIX F 569 APPENDIX G 573 viii CONTENTS Preface ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.