ebook img

Analytical mechanics, 7ed., Solutions manual PDF

195 Pages·2004·1.989 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytical mechanics, 7ed., Solutions manual

Instructor’s Solutions Manual To Accompany Analytical Mechanics 7th Edition Grant R. Fowles - University of Utah George L. Cassiday - University of Utah ISBN-10: 0-534-49493-5 ISBN-13: 978-0-534-49493-3 Contents 1. Fundamental Concepts: Vectors. 2. Newtonian Mechanics: Rectilinear Motion of a Particle. 3. Oscillations. 4. General Motion of a Particle in Three Dimensions. 5. Noninertial Reference Systems. 6. Gravitation and Central Forces. 7. Dynamics of Systems of Particles. 8. Mechanics of Rigid Bodies: Planar Motion. 9. Motion of Rigid Bodies in Three Dimensions. 10. Lagrangian Mechanics. 11. Dynamics of Oscillating Systems. CHAPTER 1 FUNDAMENTAL CONCEPTS: VECTORS (cid:75) (cid:75) 1.1 (a) A+B=(iˆ+ ˆj)+(ˆj+kˆ)=iˆ+2ˆj+kˆ (cid:75) (cid:75) 1 A+B =(1+4+1)2 = 6 (cid:75) (cid:75) (b) 3A−2B=3(iˆ+ ˆj)−2(ˆj+kˆ)=3iˆ+ ˆj−2kˆ (cid:75) (cid:75) (c) A⋅B=(1)(0)+(1)(1)+(0)(1)=1 iˆ ˆj kˆ (cid:75) (cid:75) (d) A×B= 1 1 0 =iˆ(1−0)+ ˆj(0−1)+kˆ(1−0)=iˆ− ˆj+kˆ 0 1 1 (cid:75) (cid:75) 1 A×B =(1+1+1)2 = 3 (cid:75) (cid:75) (cid:75) 1.2 (a) A⋅(B+C)=(2iˆ+ ˆj)⋅(iˆ+4ˆj+kˆ)=(2)(1)+(1)(4)+(0)(1)=6 (cid:75) (cid:75) (cid:75) (A+B)⋅C =(3iˆ+ ˆj+kˆ)⋅4ˆj =(3)(0)+(1)(4)+(1)(0)=4 2 1 0 (cid:75) (cid:75) (cid:75) ( ) (b) A⋅ B×C = 1 0 1 =−8 0 4 0 (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) ( ) ( ) A×B ⋅C = A⋅ B×C =−8 (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (c) A×(B×C)=(A⋅C)B−(A⋅B)C =4(iˆ+kˆ)−2(4ˆj)=4iˆ−8ˆj+4kˆ (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (A×B)×C =−C×(A×B)=−(C⋅B)A−(C⋅A)B   =−0(2iˆ+ ˆj)−4(iˆ+kˆ) =4iˆ+4kˆ   1 (cid:75) (cid:75) A⋅B (a)(a)+(2a)(2a)+(0)(3a) 5a2 1.3 cosθ= = = AB 5a2 14a2 a2 5 14 5 θ=cos−1 ≈53° 14 1.4 (cid:75) (a) A=iˆ+ ˆj+kˆ : body diagonal (cid:75) (cid:75) A= A⋅A = iˆ⋅iˆ+ ˆj⋅ ˆj+kˆ⋅kˆ = 3 (cid:75) (b) B=iˆˆ+ j : face diagonal (cid:75) (cid:75) B= B⋅B = 2 iˆ ˆj kˆ (cid:75) (cid:75) (cid:75) (c) C = A×B= 1 1 1 1 1 0 (cid:75) (cid:75) A⋅B 1−1 (d) cosθ= = =0 ∴θ=90(cid:68) AB 3 2 1.5 (cid:75) (cid:75) (cid:75) B B= B = A×C = ACsinθ ∴C =Csinθ= y A (cid:75) (cid:75) u A⋅C = ACcosθ=u ∴C =Ccosθ= x A (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) A B×A u (cid:75) B×AB C = C + (cid:75) (cid:75) C = A+   A x B×A y A2 AB  A u (cid:75) 1 (cid:75) (cid:75) = A+ B×A A2 A2 (cid:75) dA d d d 1.6 =iˆ (αt)+ ˆj (βt2)+kˆ (γt3)=iˆα+ ˆj2βt+kˆ3γt2 dt dt dt dt (cid:75) d2A = ˆj2β+kˆ6γt dt2 2 (cid:75) (cid:75) 1.7 0= A⋅B=(q)(q)+(3)(−q)+(1)(2)=q2 −3q+2 (q−2)(q−1)=0, q=1 or 2 (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) 1.8 A+B2 =(A+B)⋅(A+B)= A2 +B2 +2A⋅B (cid:75) (cid:75) 2  A + B = A2 +B2 +2AB   (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) Since A⋅B= ABcosθ≤ AB, A+B ≤ A + B (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) A⋅B = ABcosθ = A B cosθ ≤ A B Bcosθ≤ B (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) (cid:75) ( ) ( ) ( ) 1.9 Show A× B×C = A⋅C B− A⋅B C iˆ ˆj kˆ (cid:75) (cid:75) (cid:75) ( ) ( ) or A× B B B = AC + A C + AC B− A B + A B + A B C x y z x x y y z z x x y y z z C C C x y z =(A B C + A B C + A B C −A B C − A B C − A B C )iˆ x x x y x y z x z x x x y y x z z x +(A B C + A B C + A B C − A B C − A B C − A B C ) ˆj x y x y y y z y z x x y y y y z z y ( ) ˆ + A B C + A B C + A B C −A B C −A B C − A B C k x z x y z y z z z x x z y y z z z z (A B C + A B C −A B C − A B C )iˆ y x y z x z y y x z z x =+(A B C + A B C −A B C − A B C ) ˆj x y x z y z x x y z z y ( ) ˆ + A B C + A B C − A B C − A B C k x z x y z y x x z y y z 3 iˆ ˆj kˆ iˆ(AyBxCy −AyByCx − AzBzCx + AzBxCz) A A A =+ˆj(A B C − A B C − A B C + A B C ) x y z z y z z z y x x y x y x B C −B C B C −B C B C −B C ˆ( ) y z z y z x x z x y y x +k A B C −A B C −A B C + A B C x z x x x z y y z y z y 1.10 y = Asinθ 1  Α=2 xy + y(B−x)= xy+ yB−xy = ABsinθ   2  (cid:75) (cid:75) Α= A×B 1.11 iˆ ˆj kˆ A A A B B B (cid:75) (cid:75) (cid:75) (cid:75) x y z x y z (cid:75) (cid:75) (cid:75) ( ) ( ) A⋅ B×C = A⋅ B B B = B B B =− A A A =−B⋅ A×C x y z x y z x y z C C C C C C C C C x y z x y z x y z 1.12 x z (cid:71) (cid:71) u A (cid:71) C (cid:71) x B (cid:75) (cid:75) (cid:71) Let A = (Ax,Ay,Az), B = (0,By,0) and C = (0,Cy,Cz) (cid:75) (cid:75) (cid:71) (cid:71) (cid:71) C is the perpendicular distance between the plane A,B and its opposite. u =BxC is z (cid:71) (cid:71) (cid:71) (cid:71) directed along the x-axis since the vectorsB, C are in the y,z plane. u = BxC = B C x y z (cid:71) (cid:71) is the area of the parallelogram formed by the vectorsB, C. Multiply that area times the (cid:75) (cid:75) height of planeA,B= A to get the volume of the parallopiped x (cid:71) (cid:71) (cid:71) ( ) V =Au =A B C = A• BxC x x x y z 4 1.13 For rotation about the z axis: iˆ⋅iˆ′=cosφ= ˆj⋅ ˆj′, kˆ⋅kˆ′=1 iˆ⋅ ˆj′=−sinφ ˆj⋅iˆ′=sinφ For rotation about the y′ axis: iˆ⋅iˆ′=cosθ=kˆ⋅kˆ′, ˆj⋅ ˆj′=1 iˆ⋅kˆ′=sinθ kˆ⋅iˆ′=−sinθ cosθ 0 −sinθ cosφ sinφ 0 cosθcosφ cosθsinφ −sinθ (cid:73)      T = 0 1 0 −sinφ cosφ 0 = −sinφ cosφ 0           sinθ 0 cosθ 0 0 1 sinθcosφ sinθsinφ cosθ      1.14 iˆ⋅iˆ′=cos30(cid:68) = 3 ˆj⋅iˆ′=sin30(cid:68) = 1 kˆ⋅iˆ′=0 2 2 1 3 iˆ⋅ ˆj′=−sin30(cid:68) =− ˆj⋅ ˆj′=cos30(cid:68) = kˆ⋅ ˆj′=0 2 2 iˆ⋅kˆ′=0 ˆj⋅kˆ′=0 kˆ⋅kˆ′=1  3 1   3   0 3+ A   2 2  2   2   x′  1 3   3  A = − 0 3 = 3−1  y′ 2 2   2    A  −1   z′  0 0 1 −1         (cid:75) A=3.232iˆ′+1.598ˆj′−kˆ′ 5 1.15 1. Rotate thru φ about z-axis φ=45(cid:68) R φ 2. Rotate thru θ about x’-axis θ=45(cid:68) R θ 3. Rotate thru ψ about z’-axis ψ=45(cid:68) R ψ  1 1  0   2 2    1 1  R = − 0 φ   2 2    0 0 1        1 1  0     1 0 0 2 2      1 1   1 1  R = 0 R = − 0 θ   ψ   2 2 2 2      1 1   0 0 1 0 −      2 2     1 1 1 1 1  − +   2 2 2 2 2 2   1 α  1 1 1 1 1      R(ψ,θ,φ)= R R R = − − − + or 0 = R(ψ,θ,φ) β ψ θ φ  2 2 2 2 2 2 2        0 γ      1 1 1  −    2 2 2  1 α (cid:75) (cid:75) (cid:75)   (cid:75)   Condition is: x′= Rx where x′= 0 and x = β         0 γ     (cid:75) (cid:75) Since x⋅x =1 we have: ψ2 +β2 +α2 =1 1 2 1 2 1 After a lot of algebra: α= − , β= + , γ= 2 4 2 4 2 (cid:75) 1.16 v =vτˆ=ctτˆ (cid:75) v2 c2t2 a =v(cid:5)τˆ+ nˆ =cτˆ+ nˆ ρ b 6 b (cid:75) (cid:75) at t = , v =τˆ bc and a =cτˆ+cnˆ c (cid:75) (cid:75) v⋅a c bc 1 cosθ= = = va bc 2c2 2 θ=45(cid:68) (cid:75) 1.17 v(t)=−iˆbωsin(ωt)+ ˆj2bωcos(ωt) (cid:75) 1 1 v =(b2ω2sin2ωt+4b2ω2cos2ωt)2 =bω(1+3cos2ωt)2 (cid:75) a(t)=−iˆbω2cosωt− ˆj2bω2sinωt (cid:75) 1 a =bω2(1+3sin2ωt)2 (cid:75) π (cid:75) at t =0, v =2bω; at t = , v =bω 2ω (cid:75) 1.18 v(t)=iˆbωcosωt− ˆjbωsinωt+kˆ2ct (cid:75) a(t)=−iˆbω2sinωt− ˆjbω2cosωt+kˆ2c (cid:75) 1 1 a =(b2ω4sin2ωt+b2ω4cos2ωt+4c2)2 =(b2ω4 +4c2)2 (cid:75) 1.19 v =r(cid:5)eˆ +rθ(cid:5)eˆ =bkekteˆ +bcekteˆ r θ r θ (cid:75) a =((cid:5)r(cid:5)−rθ(cid:5)2)eˆ +(rθ(cid:5)(cid:5)+2r(cid:5)θ(cid:5))eˆ =b(k2 −c2)ekteˆ +2bckekteˆ r θ r θ v(cid:75)⋅a(cid:75) b2k(k2 −c2)e2kt +2b2c2ke2kt cosφ= = va 1 1 bekt(k2 +c2)2 bekt (k2 −c2)2 +4c2k22   k(k2 +c2) k cosφ= = , a constant 1 1 (k2 +c2)2 (k2 +c2) (k2 +c2)2 (cid:75) 1.20 a =(R(cid:5)(cid:5)−Rφ)eˆ +(2R(cid:5)φ+Rφ)eˆ +(cid:5)z(cid:5)eˆ R φ z (cid:75) a =−bω2eˆ +2ceˆ R z (cid:75) 1 a =(b2ω4 +4c2)2 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.