ebook img

Analytical asse peptide-metal interactio Analytical assessment of metal interactions and ... PDF

337 Pages·2010·5.38 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytical asse peptide-metal interactio Analytical assessment of metal interactions and ...

AAnnaallyyttiiccaall aasssseessssmmeenntt ooff peptide-mmmeeetttaaalll iiinnnttteeerrraaaccctttiiiooonnnsss aaannnddd sssuuubbbssseeeqqquuueeennnttt stability Laura A. Byrne B.Sc. (Hons) AAA ttthhheeesssiiisss sssuuubbbmmmiiitttttteeeddd tttooo ttthhheee NNNaaatttiiiooonnnaaalll UUUnnniiivvveeerrrsssiiitttyyy ooofff IIIrrreeelllaaannnddd ffoorr tthhee ddeeggrreeee ooff Doctor of Philosophy (Ph.D.) May 2010 RReesseeaarrcchh SSuuppeerrvviissoorrss:: Dr. Richard Murphy Dr. Cathal Connolly Prof. Sean Doyle HHeeaadd ooff DDeeppaarrttmmeenntt:: Prof. Kay Ohlendieck Department of Biology Faculty of Science National University of Ireland Maynooth, Co. Kildare, Ireland I Table of Contents List of Figures V List of Tables XIII Declaration of Authorship XVI Dedication XVII Acknowledgements XVIII Abstract XIX Abbreviations XX 1. Introduction ........................................................................................... 1 1.1 General introduction.............................................................................................. 1 1.2 Trace minerals in animal nutrition ........................................................................ 5 1.3 Bioavailability ....................................................................................................... 7 1.4 Inorganic versus organic trace minerals ................................................................ 9 1.4.1 Ligand sources ............................................................................................ 10 1.5 Complexes and chelates ...................................................................................... 14 1.6 Methods of comparative analysis for metal proteinates ...................................... 22 1.6.1 Surface Enhanced Laser Desorption/Ionisation Time of Flight Mass Spectrometry (SELDI-ToF-MS) ................................................................. 26 1.6.2 Tandem Mass Spectrometry (MS/MS) ....................................................... 31 1.6.3 Enzyme-Linked Immunosorbent Assay (ELISA) ....................................... 32 1.6.4 Introduction to stability constants ............................................................... 34 1.6.5 Potentiometry .............................................................................................. 39 1.6.6 WinCOMICS and Hyperquad ..................................................................... 43 1.7 Aims and objectives of the study ........................................................................ 45 2. Materials and Methods ....................................................................... 47 2.1 Reagents and equipment ..................................................................................... 47 2.2 Laboratory preparation and analysis of metal proteinates .................................. 48 2.2.1 Hydrolysis of a protein source .................................................................... 48 2.2.2 Formation of metal proteinates from soy flour hydrolysate ....................... 48 I 2.2.3 Determination of total nitrogen ................................................................... 49 2.2.4 Free α-Amino Nitrogen (FAN) determination ............................................ 49 2.2.5 CHN analysis .............................................................................................. 50 2.2.6 Flame Atomic Absorption Spectroscopy .................................................... 50 2.2.7 Fourier Transform Infrared (FTIR) Spectroscopy ...................................... 51 2.2.8 Amino acid profiling ................................................................................... 51 2.2.9 Preparation of a metal proteinate mimic ..................................................... 51 2.3 Mass spectrometry .............................................................................................. 52 2.3.1 Calibration of Surface Enhanced Laser Desorption / Ionisation Time-of- Flight Mass Spectrometer (SELDI-ToF-MS) Instrument ........................... 52 2.3.2 Analysis of suitable array surfaces and buffers for SELDI-ToF-MS ......... 54 2.3.3 SELDI-ToF-MS analysis of metal proteinates ............................................ 56 2.3.4 Tandem MS Collision-Activated Dissociation ........................................... 56 2.3.5 Premix analysis ........................................................................................... 57 2.3.6 Feed analysis ............................................................................................... 57 2.3.7 Synthetic peptide production ...................................................................... 57 2.4 Enzyme Linked Immunosorbent Assay (ELISA) ............................................... 58 2.5 Stability constant determination using potentiometry and ion-selective electrodes (ISE) .................................................................................................................... 59 3. Results and Discussion ........................................................................ 62 3.1 Assessment of potential protein sources for metal proteinate production .......... 62 3.1.1 Total nitrogen analysis of protein sources .................................................. 64 3.1.2 Hydrolysis of protein sources...................................................................... 65 3.1.3 Optimisation of hydrolysis parameters ....................................................... 67 3.1.3.1 Optimisation of hydrolysis temperature .............................................. 69 3.1.3.2 Optimisation of hydrolysis pH ............................................................ 72 3.1.3.3 Optimisation of enzyme concentration ............................................... 73 3.2 Metal proteinate production ................................................................................ 77 3.2.1 Formation of metal proteinates ................................................................... 77 3.3 Metal proteinate characterisation ........................................................................ 79 II 3.3.1 FAN analysis of metal proteinates .............................................................. 80 3.3.2 Determination of total metal content using flame Atomic Absorption Spectrometry ............................................................................................... 81 3.3.3 CHN analysis .............................................................................................. 82 3.3.4 Fourier Transform InfraRed (FTIR) spectroscopy ...................................... 84 3.3.5 Amino acid profiling ................................................................................... 88 3.3.6 Surface-Enhanced-Laser-Desorption/Ionisation-Time-of-Flight-Mass- Spectrometry (SELDI-ToF-MS) analysis of metal proteinates .................. 91 3.3.6.1 Calibration of SELDI-ToF-MS Instrument ......................................... 92 3.3.6.2 Selection of suitable array surfaces ..................................................... 93 3.3.6.3 Analysis of hydrolysed soy using Immobilised Metal Affinity Capture (IMAC) arrays ................................................................................... 100 3.3.6.4 SELDI-ToF-MS analysis of a metal-peptide mimic ......................... 101 3.3.6.5 Immobilised Metal Affinity Capture (IMAC) analysis of metal proteinates ......................................................................................... 104 3.3.6.6 Marker peptide identification ............................................................ 119 3.3.6.7 Premix analysis ................................................................................. 121 3.3.6.8 Feed analysis ..................................................................................... 125 3.3.6.9 Tandem Mass Spectrometry (MS/MS) ............................................. 129 3.4 Synthetic peptide analysis ................................................................................. 134 3.5 Antibody assay .................................................................................................. 135 3.6 The use of potentiometry and ISE titrations to determine stability constants... 140 3.6.1 Calibration of the Cu(II) ion selective electrode ....................................... 143 3.6.2 Potentiometric titrations of amino acids and Cu2+ using an ISE. .............. 145 3.6.3 Potentiometric titrations of peptide ligands and Cu2+ using an ISE .......... 154 3.6.4 Potentiometric titrations of polypeptides and Cu2+ using an ISE. ............ 175 3.6.5 Potentiometric titrations of novel peptide ligands and Cu2+ using an ISE 181 3.6.5.1 Determination of stability constants for the 1148 Da marker peptide with Cu2+ ....................................................................................................... 182 3.6.5.2 Determination of stability constants for the 1181 Da marker peptide with Cu2+ ....................................................................................................... 188 III 3.6.5.3 Determination of stability constants for the 1300 Da marker peptide with Cu2+ ....................................................................................................... 192 3.6.5.4 Determination of stability constants for the 1514 Da marker peptide with Cu2+ ....................................................................................................... 197 3.6.5.5 Identification of species proposed by Hyperquad in metal proteinates using SELDI-ToF-MS ........................................................................... 202 3.6.6 Further applications of ISE electrodes in this work .................................. 207 3.6.6.1 Potentiometric titrations of hydrolysed soy and Cu2+ using an ISE .. 207 3.6.6.2 Effect of ligand hydrolysis on proteinate stability ............................ 209 3.6.6.3 Potentiometric titrations of metal proteinate test samples. ............... 263 4. Conclusion .......................................................................................... 269 Bibliography .................................................................................................. 274 Appendix 1 - FTIR ........................................................................................................ 291 Appendix 2 – Amino acids............................................................................................ 312 IV List of Figures Chapter 1. Introduction Figure 1.1 Effect of declining trace mineral status on animal performance 3 Figure 1.2 General schematic of an amino acid 10 Figure 1.3 Stereochemistry of the peptide bond 11 Figure 1.4 Schematic diagrams of a metal chelate and a metal complex 15 Figure 1.5 Selection of amino acid side-chain metal-ion binding modes 17 Figure 1.6 Chelate formed from Copper and the tripeptide Gly-Gly-His 18 Figure 1.7 SELDI-ToF-MS chromatographic surface types 27 Figure 1.8 Schematic diagram of a Triple Quadrupole Time of Flight (QqToF) mass spectrometer used to obtain peptide sequences 31 Figure 1.9 An example of a typical ELISA assay 33 Figure 1.10 Schematic of a combination ion-selective electrode 41 Chapter 3. Results and discussion Figure 3.1 Schematic diagram of a 1:2, copper:glycine chelate 63 Figure 3.2 Proteolysis of peptide linkage Figure 3.3 Free α-amino nitrogen (ppm) before and after hydrolysis 65 Figure 3.4 Effect of temperature adjustment on FAN release from soy flour 68 Figure 3.5 Assessment of thermal effects on enzymatic hydrolysates using SELDI-ToF-MS 71 Figure 3.6 Effect of pH adjustment on FAN release from soy flour 72 Figure 3.7 Effect of adjusting enzyme concentration on FAN release from soy flour 74 Figure 3.8 Assessment of the effect of varying enzyme concentration on soy hydrolysates using SELDI-ToF-MS 76 Figure 3.9 Colour comparisons of copper, iron, manganese and zinc proteinates 79 Figure 3.10 Free α-amino nitrogen analyses of metal proteinates 81 Figure 3.11 FTIR spectra of copper(II) proteinates and soy ligand controls 85 Figure 3.12 IR spectra of soil fulvic acid at pH 2 (blue) and pH 6 (red) 87 V Figure 3.13 Amino acid profile of a soy ligand 89 Figure 3.14 Internal calibration spectra obtained using All-in-One peptide mixture 93 Figure 3.15 Cu proteinate analyses on a selection of array surfaces 94 Figure 3.16 Fe proteinate analyses on a selection of array surfaces 95 Figure 3.17 Mn proteinate analyses on a selection of array surfaces 96 Figure 3.18 Zn proteinate analyses on a selection of array surfaces 97 Figure 3.19 Wide spectral range analysis of a Mn(II) proteinate using an NP20 array 98 Figure 3.20 Diagrams illustrating the NTA surface structure (A) and the binding of a metal ion M+ to the NTA group (B) 99 Figure 3.21 SELDI-ToF-MS spectra of a hydrolysed and unhydrolysed soy sample 100 Figure 3.22 Fully deprotonated EDTA molecule illustrating metal (M) coordination 102 Figure 3.23 SELDI-ToF-MS spectra of ranatensin before and after treatment with EDTA 103 Figure 3.24 SELDI-ToF-MS spectra (0 Da – 5000 Da) of a selection of metal proteinates and controls 105 Figure 3.25 SELDI-ToF-MS spectra (0 Da – 500 Da) of a selection of metal proteinates and controls 106 Figure 3.26 SELDI-ToF-MS spectra (500 Da – 1000 Da) of a selection of metal proteinates and controls 108 Figure 3.27 SELDI-ToF-MS spectra (700 Da – 950 Da) of copper and zinc proteinates treated with EDTA 109 Figure 3.28 SELDI-ToF-MS spectra (1000 Da – 1500 Da) of a selection of metal proteinates and controls 111 Figure 3.29 SELDI-ToF-MS spectra (1150 Da – 1370 Da) of a zinc(II) proteinate treated with EDTA 113 Figure 3.30 SELDI-ToF-MS spectra (1500 Da – 2000 Da) of a selection of metal proteinates and controls 114 VI Figure 3.31 SELDI-ToF-MS spectra (1140 Da – 1700 Da) of a copper proteinate and controls 115 Figure 3.32 SELDI-ToF-MS sample analysis of Cu proteinate batches manufactured using four different batches of soy flour 117 Figure 3.33 SELDI-ToF-MS spectra of the peptides of interest in laboratory manufactured metal proteinate samples 120 Figure 3.34 SELDI-ToF-MS spectra of copper proteinates manufactured on a pilot scale 120 Figure 3.35 Assessment of SELDI-ToF-MS for qualitative detection of metal proteinates in premix material 123 Figure 3.36 Assessment of SELDI-ToF-MS for qualitative detection of metal proteinates in premix material at a range of inclusion levels 124 Figure 3.37 Assessment of SELDI-ToF-MS for qualitative detection of metal proteinates in feed 126 Figure 3.38 Assessment of SELDI-ToF-MS for qualitative detection of metal proteinates in premix material at low inclusion levels 128 Figure 3.39 Tandem MS spectra of a copper proteinate sample 130 Figure 3.40 Tandem MS spectra of the 1148 Da marker peptide 130 Figure 3.41 Tandem MS spectra of the 1181 Da marker peptide 131 Figure 3.42 Tandem MS spectra of the 1300 Da marker peptide 131 Figure 3.43 Tandem MS spectra of the 1514 Da marker peptide 132 Figure 3.44 Analysis of the 1300 Da synthetic peptide using SELDI-ToF-MS 134 Figure 3.45 Schematic diagrams outlining an ELISA method 136 Figure 3.46 Standard curve of antibodies 1E2(♦) and 1H5(■) raised against the 1300Da synthetic peptide 137 Figure 3.47 ELISA of synthetic and native antigen containing samples and an unhydrolysed soy control 138 Figure 3.48 Calibration curve for a Cu2+ ISE with (CuNO ) .2.5H O at 25 °C and 3 2 2 0.1 M ionic strength 144 Figure 3.49 Comparative analysis of published and experimental log K values for amino acid ligands with Cu2+ 147 VII Figure 3.50 Schematic of the complex formed between Cu and glycine 148 Figure 3.51 Experimental titration curves for 10mM Cu + 20mM Glycine at 25 °C and 0.1 M ionic strength illustrating the decrease in free Cu with increasing pH 149 Figure 3.52 Speciation diagram created using WinCOMICS for Cu (0.001 M) and Glycine (0.002 M) at 25 °C and 0.1 M ionic strength, [M]:[L] = 1:2 150 Figure 3.53 Screenshot capture of the Hyperquad file for a Cu-Gly titration 151 Figure 3.54 FTIR spectra of a copper(II) sulphate pentahydrate control, histidine and a His-Cu complex 153 Figure 3.55 The general formula for a dipeptides comprised of two amino acids 154 Figure 3.56 Screenshot capture of the Hyperquad file for a copper(II)-glygly titration 156 Figure 3.57 Chelate formed from copper and the dipeptide Gly-His 157 Figure 3.58 Speciation diagram created using WinCOMICS for Cu (0.001 M) and diglycine (0.002 M) at 25 °C and 0.1 M ionic strength, [M]:[L] = 1:2 160 Figure 3.59 Screenshot capture of the Hyperquad file of diglycine with Cu2+ 160 Figure 3.60 FTIR spectra of a copper(II) sulphate pentahydrate control, diglycine and a GlyGly-Cu complex 163 Figure 3.61 Speciation diagram created using WinCOMICS for Cu (0.001 M) and triglycine (0.002 M) at 25 °C and 0.1 M ionic strength, [M]:[L] = 1:2 164 Figure 3.62 Screenshot capture of the Hyperquad file of triglycine with Cu2+ 164 Figure 3.63 FTIR spectra of a copper(II) sulphate pentahydrate control, triglycine and a (Gly) -Cu complex 167 3 Figure 3.64 Speciation diagram created using WinCOMICS for Cu (0.001 M) and tetraglycine (0.002 M) at 25 °C and 0.1 M ionic strength, [M]:[L] = 1:2 167 Figure 3.65 Screenshot capture of the Hyperquad file of tetraglycine with Cu2+ 168 VIII Figure 3.66 FTIR spectra of a copper(II) sulphate pentahydrate control, tetraglycine and a (Gly) -Cu complex 169 4 Figure 3.67 Speciation diagram created using WinCOMICS for Cu (0.001 M) and pentaglycine (0.002 M) at 25 °C and 0.1 M ionic strength, [M]:[L] = 1:2 170 Figure 3.68 Screenshot capture of the Hyperquad file of pentaglycine with Cu2+ 170 Figure 3.69 FTIR spectra of pentaglycine and a (Gly) -Cu complex 171 5 Figure 3.70 Structure of ranatensin, a polypeptide used as a metal peptide mimic 176 Figure 3.71 SELDI-ToF-MS spectra of ranatensin (Panel 1), the formation of a ranatensin-Cu complex (Panel 2) and the complex after treatment with EDTA (Panel 3) 178 Figure 3.72 Screenshot capture of the Hyperquad file of the reaction between Cu2+ and ranatensin at pH 5.5 180 Figure 3.73 Screenshot capture of the Hyperquad file of the 1148 Da synthetic peptide with Cu2+ at pH 5.5 and 0.1 M ionic strength at 25 oC 184 Figure 3.74 SELDI-ToF-MS spectra of the 1148 Da synthetic peptide before and after titration with Cu and on treatment with EDTA 185 Figure 3.75 FTIR spectra of the 1148 Da synthetic peptide titrated with Cu(II) and a copper and a peptide control 186 Figure 3.76 Structures of 1:1, metal:ligand complex species for (a) Gly-His (CuH L), (b) Gly-Gly-His (CuH L) and (c) Gly-Gly-Gly-His 187 -1 -2 Figure 3.77 Screenshot capture of the Hyperquad file of the 1181 Da synthetic peptide with Cu2+ at pH 5.5 and 0.1 M ionic strength at 25 oC 189 Figure 3.78 SELDI-ToF-MS spectra of the 1181 Da synthetic peptide before and after titration with Cu 190 Figure 3.79 FTIR spectra of the 1181 Da synthetic peptide titrated with Cu(II) and a copper and a peptide control 191 Figure 3.80 Screenshot capture of the Hyperquad file of the 1300 Da synthetic peptide with Cu2+ at pH 5.5 and 0.1 M ionic strength at 25 oC 193 Figure 3.81 SELDI-ToF-MS spectra of the 1300 Da synthetic peptide before and after titrating with Cu 194 IX

Description:
Flame atomic absorption spectrometry (FAAS) is commonly used to determine the metal content in samples .. Antibodies are host proteins produced in response to the presence of a foreign molecule (antigen). yielding a symmetric COO- mode (νs) between 1300 and 1420 cm. -1. (Hay et al., 2007).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.