ebook img

Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients PDF

139 Pages·2022·2.078 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients

SpringerBriefs in Probability and Mathematical Statistics Haesung Lee · Wilhelm Stannat · Gerald Trutnau Analytic Theory of Itô- Stochastic Differential Equations with Non- smooth Coefficients SpringerBriefs in Probability and Mathematical Statistics Editor-in-Chief GesineReinert,UniversityofOxford,Oxford,UK SeriesEditors NinaGantert,TechnischeUniversitätMünchen,Munich,Germany TailenHsing,UniversityofMichigan,AnnArbor,MI,USA RichardNickl,UniversityofCambridge,Cambridge,UK SandrinePéché,UniversitéParisDiderot,Paris,France YosefRinott,HebrewUniversityofJerusalem,Jerusalem,Israel AlmutE.D.Veraart,ImperialCollegeLondon,London,UK SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professionalto academic. Briefsarecharacterizedbyfast,globalelectronicdissemination,standardpublishing contracts, standardized manuscript preparation and formatting guidelines, and expeditedproductionschedules. Typicaltopicsmightinclude: (cid:129) Atimelyreportofstate-of-thearttechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Lectureofseminarnotesmakinga specialisttopicaccessible fornon-specialist readers (cid:129) SpringerBriefs in Probability and Mathematical Statistics showcase topics of currentrelevanceinthefieldofprobabilityandmathematicalstatistics Manuscriptspresentingnewresultsinaclassicalfield,newfield,oranemerging topic,orbridgesbetweennewresultsandalreadypublishedworks,areencouraged. This series is intended for mathematicians and other scientists with interest in probabilityandmathematicalstatistics.Allvolumespublishedinthisseriesundergo athoroughrefereeingprocess. TheSBPMS seriesispublishedundertheauspicesoftheBernoulliSocietyfor MathematicalStatisticsandProbability. All titles in this seriesare peer-reviewedto the usualstandardsof mathematics anditsapplications. Haesung Lee (cid:129) Wilhelm Stannat (cid:129) Gerald Trutnau Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients HaesungLee WilhelmStannat DepartmentofMathematicsandComputer InstitutfürMathematik Science TechnischeUniversitätBerlin KoreaScienceAcademyofKAIST Berlin,Germany Busan,Korea(Republicof) GeraldTrutnau DepartmentofMathematicalSciences andResearchInstituteofMathematics SeoulNationalUniversity Seoul,Korea(Republicof) ISSN2365-4333 ISSN2365-4341 (electronic) SpringerBriefsinProbabilityandMathematicalStatistics ISBN978-981-19-3830-6 ISBN978-981-19-3831-3 (eBook) https://doi.org/10.1007/978-981-19-3831-3 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Acknowledgments TheresearchofHaesungLeewassupportedbytheBasicScienceResearchProgram throughtheNationalResearchFoundationofKorea(NRF)fundedbytheMinistry of Education(2020R1A6A3A01096151)and by the DFG throughthe IRTG 2235 “Searching for the regular in the irregular: Analysis of singular and random systems.” The research of Wilhelm Stannat was partially supported by the DFG throughthe Research Unit FOR 2402“Rough paths, stochastic partial differential equations and related topics.” The research of Gerald Trutnau was supported by theBasicScienceResearchProgramthroughtheNationalResearchFoundationof Korea(NRF)fundedbytheMinistryofEducation(2017R1D1A1B03035632). v Contents 1 Introduction .................................................................. 1 1.1 MethodsandResults.................................................... 3 1.2 OrganizationoftheBook............................................... 7 2 TheAbstractCauchyProbleminLr-SpaceswithWeights............. 9 2.1 TheAbstractSetting,ExistenceandUniqueness...................... 9 2.1.1 FrameworkandBasicNotations............................... 12 2.1.2 ExistenceofMaximalExtensionsonRd ...................... 15 2.1.3 UniquenessofMaximalExtensionsonRd .................... 24 2.2 ExistenceandRegularityofDensitiestoInfinitesimally InvariantMeasures...................................................... 37 2.2.1 ClassofAdmissibleCoefficientsandtheMainTheorem .... 37 2.2.2 Proofs............................................................ 40 2.2.3 Discussion....................................................... 43 2.3 RegularSolutionstotheAbstractCauchyProblem................... 44 2.4 IrreducibilityofSolutionstotheAbstractCauchyProblem.......... 52 2.5 CommentsandReferencestoRelatedLiterature...................... 56 3 StochasticDifferentialEquations .......................................... 59 3.1 Existence ................................................................ 59 3.1.1 RegularSolutionstotheAbstractCauchyProblem asTransitionFunctions......................................... 59 3.1.2 ConstructionofaHuntProcess ................................ 62 3.1.3 Krylov-typeEstimate........................................... 70 3.1.4 IdentificationoftheStochasticDifferentialEquation......... 73 3.2 GlobalProperties........................................................ 79 3.2.1 Non-explosionResultsandMomentInequalities............. 80 3.2.2 TransienceandRecurrence..................................... 91 3.2.3 Long Time Behavior: Ergodicity, Existence and Uniqueness of Invariant Measures, Examples/Counterexamples.................................... 98 vii viii Contents 3.3 Uniqueness.............................................................. 103 3.3.1 PathwiseUniquenessandStrongSolutions ................... 104 3.3.2 UniquenessinLaw(ViaL1-Uniqueness) ..................... 111 3.4 CommentsandReferencestoRelatedLiterature...................... 115 4 ConclusionandOutlook..................................................... 117 References......................................................................... 121 Index............................................................................... 125 Notations and Conventions VectorSpacesandNorms (cid:2)·(cid:2) theEuclideannormonthed-dimensionalEuclideanspaceRd (cid:3)·,·(cid:4) theEuclideaninnerproductinRd |·| theabsolutevalueinR (cid:2)·(cid:2)B thenormassociatedwithaBanachspaceB B(cid:5) thedualspaceofaBanachspaceB SetsandSetOperations Rd thed-dimensionalEuclideanspace Rd the one-pointcompactificationof Rd with the point at infinity (cid:2) “(cid:2)” (Rd)S setofallfunctionsfromS toRd,whereS ⊂[0,∞) (cid:2) (cid:2) V theclosureofV ⊂Rd B (x) forx ∈Rd,r >0,definedas{y ∈Rd :(cid:2)x−y(cid:2)<r} r B (x) definedas{y ∈Rd :(cid:2)x−y(cid:2)≤r} r B shortforB (0) r r R (r) theopencubeinRd withcenterx ∈Rd andedgelengthr >0 x R (r) theclosureofR (r) x x A+B definedas{a+b:a ∈A,b∈B},forsetsA,Bwithanaddition operation Measuresandσ-Algebras In this book, any measure is always non-zero, and positive and if a measure is defined on a subset of Rd, then it is a Borel measure, i.e., defined on the Borel subsets. μ=ρdx denotestheinfinitesimallyinvariantmeasure(see(2.14),Theo- rem2.24andRemark2.28) dx theLebesguemeasureonB(Rd) dt theLebesguemeasureonB(R) ix x NotationsandConventions B(Rd) the Borel subsets of Rd or the space of Borel measurable functionsf :Rd →R B(Rd) defined as {A ⊂ Rd : A ∈ B(Rd)orA = A ∪{(cid:2)}, A ∈ (cid:2) (cid:2) 0 0 B(Rd)} B(X) smallest σ-algebra containing the open sets of a topological spaceX a.e. almosteverywhere supp(ν) thesupportofameasureν onRd supp(u) forameasurablefunctionu:Rd →Rdefinedassupp(|u|dx) δ Diracmeasureatx ∈Rd x (cid:2) P (x,dy) the sub-probability measure defined by P (x,A) = P 1 (x), t t t A A∈B(Rd),(x,t)∈Rd ×(0,∞)(seeProposition3.1) DerivativesofFunctions,VectorFields ∂ f (weak)partialderivativeinthetimevariablet t ∂ f (weak)partialderivativeinthei-thspatialcoordinate i ∇f (weak)spatialgradient,∇f :=(∂ f,...,∂ f) 1 d ∂ f second-order(weak)partialderivatives,∂ f :=∂ ∂ f ij ij i j ∇2f (weak)Hessianmatrix,(∇(cid:2)2f)=(∂ijf)1≤i,j≤d (cid:2)f (weak)Laplacian,(cid:2)f = di=1∂iif divF (we(cid:2)ak)divergenceofthevectorfieldF=(f1,...,fd),defined as di=1∂ifi (∇B)i for 1 ≤ i ≤ d and a matrix B = (bij)1≤i,j≤d of functions, (cid:2)(∇B)i is the divergence of the i-th row of B, i.e., defined as d ∂ b j=1 j ij ∇B definedas((∇B) ,...,(∇B) ) 1 d BT foramatrixB,thetransposedmatrixisdenotedbyBT trace(B) t(cid:2)race of a matrix of functions B = (bij)1≤i,j≤d, trace(B) = d b i=1 ii A diffusionmatrixA=(aij)1≤i,j≤d G in Sect. 2.1 the drift G satisfies G = (g ,...,g ) ∈ 1 d L2 (Rd,Rd,μ) (cf. (2.13)). From Sect. 2.2.1 on the drift loc satisfiesG=(g ,...,g )= 1∇(A+CT)+H(seeassumption 1 d 2 (a)inSect.2.2.1and(2.55),butalsoRemark2.23) βρ,B logarithmicderivative(ofρ associatedwithB =(cid:3)(cid:2)(bij)1≤i,j≤d), βρ,B =(cid:4) (β1ρ,B,...,βdρ,B), where βiρ,B = 12 dj=1∂jbij+ b ∂jρ , i.e., βρ,B = 1∇B + 1 B∇ρ (see (2.19) and ij ρ 2 2ρ Remark2.28) B B = G−βρ,A, divergencezerovectorfield with respectto μ (see(2.22),(2.23))

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.