ebook img

Analytic Photometric Redshift Estimator for Type Ia Supernovae From the Large Synoptic Survey Telescope PDF

4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytic Photometric Redshift Estimator for Type Ia Supernovae From the Large Synoptic Survey Telescope

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed13May2015 (MNLATEXstylefilev2.2) Analytic Photometric Redshift Estimator for Type Ia Supernovae From the Large Synoptic Survey Telescope Yun Wang1,2⋆, E. Gjergo3, and S. Kuhlmann3 1InfraredProcessingandAnalysisCenter,CaliforniaInstituteofTechnology,770SouthWilsonAvenue,Pasadena,CA91125 2HomerL.DodgeDepartmentofPhysics&Astronomy,Univ.ofOklahoma,440WBrooksSt.,Norman,OK73019,U.S.A. 5 3ArgonneNationalLaboratory,9700SouthCassAvenue,Lemont,IL60439,USA 1 0 2 13May2015 y a M ABSTRACT Accurate and precise photometric redshifts (photo-z’s) of Type Ia supernovae(SNe Ia) can 2 enable the use of SNe Ia, measured only with photometry, to probe cosmology. This dra- 1 matically increases the science return of supernova surveys planned for the Large Synop- tic Survey Telescope (LSST). In this paper we describe a significantly improved version ] O of the simple analytic photo-z estimator proposed by Wang (2007) and further developed C by Wang, Narayan, and Wood-Vasey (2007). We apply it to 55,422 simulated SNe Ia gen- erated using the SNANA package with the LSST filters. We find that the estimated er- . ph zro’srsthoantthhaevpehhoitgoh-z’psr,eσczispihoont/,(a1cc+urzapchyo,t)a,ncdanpubreityu.seUdsiansgfiSltNersIatocporloordsucaesawseellt oasf pShNotoIa- - peak magnitude in the i band, we obtain a set of photo-z’s with 2 percent accuracy (with o r σ(zphot−zspec)/(1+zspec)=0.02),abiasinzphot(themeanofzphot−zspec)of−9×10−5, t andanoutlierfraction(with|(z −z )/(1+z )|>0.1)of0.23percent,withthere- s phot spec spec a quirementthat σzphot/(1+zphot) < 0.01. Using the SN Ia colors only, we obtain a set of [ photo-z’swithsimilarqualitybyrequiringthatσzphot/(1+zphot)<0.007;thisleadstoaset 2 ofphoto-z’swith2percentaccuracy,abiasinzphot of5.9×10−4,andanoutlierfractionof v 0.32percent. 9 3 Keywords: cosmology:observations,distancescale 8 6 0 . 1 1 INTRODUCTION thatcanbeusedtomeasurecosmicexpansionhistoryinthecom- 0 ingyearsanddecades.ThousandsofSNeIaareexpectedfromthe 5 TheuseofTypeIasupernovae(SNeIa)ascosmologicalstandard Dark EnergySurvey (DES) (Bernsteinetal. 2012), and hundreds 1 candles is a corner stone of modern cosmology, and led to the ofthousands ofSNeIaareexpectedfromLargeSynopticSurvey : observational discovery of cosmicacceleration (Riessetal.1998; v Telescope(LSST)(Abelletal.2009).2 Perlmutteretal. 1999). The true nature of cosmic acceleration, i The majority of the SNe Ia from LSST will only have pho- X dubbed“darkenergy”forconvenience, remainsshroudedinmys- tometry, and willnot have spectroscopic redshifts, due tothe ex- r tery. We do not even know if it is an unknown form of energy pensiveresourcesrequired toobtainfollow-upspectroscopy. For- a (hence appropriately named “dark energy”), or a consequence of tunately,theredshiftsoftheSNeIacanbeestimatedusingmulti- themodificationofEinstein’stheoryofgeneralrelativity(“modi- bandphotometry(theseapproximateredshiftsarecalledphotomet- fiedgravity”).1 Probingthetruenatureofcosmicaccelerationre- ricredshifts,orphoto-z’s).However,theobservedphotometricSNe quiresthemeasurement ofbothcosmicexpansionhistoryandthe needtobeclassifiedfirstusingphotometry(see“SupernovaPho- growthhistoryoflargescalestructure(Knox,Song,&Tyson2006; tometric Classification Challenge” by Kessleretal. (2010b) for a Guzzoetal.2008;Wang2008).TheuseofSNeIaremainsoneof detaileddiscussion).Evenapplyinganoptimizedversionofthetop themostimportantmethodsformeasuringcosmicexpansionhis- performingmethodfromtheSupernovaPhotometricClassification tory. Challenge, the photometric-classification algorithm of Sakoetal. We can expect adramatic increase inthe number of SNeIa (2011)resultinover25%oftheresultantphotometricSNIasam- pleremaining non-Ia SNe(Campbelletal.2013).3 Wewill defer ⋆ E-mail:[email protected] 1 For recent reviews, see Ratra&Vogeley (2008); 2 http://www.lsst.org/lsst/science Frieman,Turner,&Huterer (2008); Caldwell&Kamionkowski (2009); 3 Thephotometric-classificationmethodofCampbelletal.(2013)isbased Uzan(2010);Wang(2010);Lietal.(2011);Weinbergetal.(2013). ontheSNclassificationtechniqueofSakoetal.(2011),butmadeadditional (cid:13)c 0000RAS 2 Wang,Gjergo, &Kuhlmann thedifficulttaskofphotometricclassificationofuturework,andfo- wherethedatavectorp={1,g ,r ,i ,z ,i2,i3,∆i }.Theco- f f f f f f 15 cus on the relatively easier task of estimating redshifts of known efficientsc (i=1,2,...,8)arefoundbyusingatrainingsetofSNeIa i SNeIausingphotometryonly. with griz (or riz, for which c = 0) lightcurves and measured 2 SNeIawithsufficientlyaccurateandprecisephoto-z’scanbe spectroscopicredshifts.Thejackknifetechnique(Lupton1993)is usedforprobingcosmology.Thiswoulddramaticallyincreasethe usedtoestimatethemeanandthecovariancematrixofc . i science return of supernova surveys planned for LSST. Accurate photo-z’s can also enhance the ability of observers to accurately target high redshift SNe Ia for spectroscopy, allowing flexibility 2.2 Photo-zEstimatorAppliedtoLSSTFilters andoptimizationinsurveydesignforStageIIIandStageIVdark For application to SNe Ia from LSST with photometry only, we energyprojects(Albrechtetal.2006). havesimplifiedandmodifiedtheanalyticphoto-zestimatorforeas- Inthispaper,webuildonthepreviousworkbyWang(2007) ierapplicationandbetterperformanceasfollows: and Wang,Narayan,&Wood-Vasey (2007), and present a sim- (1)Insteadofusingthefluxesinallfiltersexceptiattheepochof ple analytic photo-z estimator. We apply this photo-z estimator imaximumfluxtomakeaneffectiveK-correctiontotheiflux,we to55,422simulatedSNeIageneratedusingtheSNANApackage justusethepeakmagnitudesinallfiltersforeachSNtoconstruct (Kessleretal.2009b)withtheLSSTfilters.Wepresentourmethod anindicatorofthespectralshapeoftheSN. inSec.2,describethesimulationofLSSTSNeIainSec.3,showour (2)Weadd2ndordertermsinthecolorsforimprovedaccuracyand resultsinSec.4,anddiscussourfindingsinSec.5. precisionoftheestimator. (3) We replace ∆i with ∆i = 2.5log(f12d/f ), to increase 15 12 i i thesamplesize,wherewheref12d istheibandfluxat12daysaf- 2 THEMETHOD i tertheifluxmaximumintheestimatedrest-frame,corresponding The analytic photo-z estimator for SNe Ia proposed by Wang totheepochof∆t12d = 12(1+z0 )daysaftertheepochofi phot (2007) is empirical, model independent (no templates used), and fluxmaximum. usesobservablesthatreflectthepropertiesofSNeIaascalibrated Notethatouruseof∆i wasfirstintroducedbyWang(2007) 15 standardcandles.ItwasdevelopedusingtheSNIadatareleasedby toreducethescatterintheestimatedSNIaphotometricredshifts; theSupernovaLegacySurvey(Astieretal.2006). itisanalogoustotheuseof∆m15inSNIacalibration,buttheuse This method requires a training set of SNe Ia with spectro- ofibandmagnitudeallowsustoincludealargersetofSNeIain scopicredshifts.TheSNeIainthetrainingsetarethesameasthe ouranalysis(Wang2007). data,butwithknownredshifts.Thetrainingsetisrandomlychosen Thekeytoobtainingasetofreliablephoto-z’sforSNeisto fromthedatatospantherangesofthecolorsandmagnitudesofthe exclude theSNethat areinferredtohave unreliablephoto-z esti- entiredataset.Thismimicswhatshouldbedoneinpracticewhen matesbasedonthephotometrydataalone.Wemakeafirstcutin realdatabecomeavailable:chooseatrainingsetfromthedatato SNetobeusedasfollows: carryoutspectroscopicredshiftmeasurements. (1)ExcludethefewSNethat havenoi-band photometry. Thisis necessarysinceweusetheimagnitudeatmaximumlightinesti- matingthephoto-z’s. 2.1 ThePrototypePhoto-zEstimator (2) Exclude SNe that have measured flux uncertainties at The prototype photo-z estimator we use here was developed in maximum light in any passband that exceeds 0.2 magni- Wang (2007) and Wang, Narayan, and Wood-Vasey (2007). This tude. This is useful in reducing the number of outliers with estimatorusesthefluxesingriz (or riz)attheepoch ofimaxi- |(zphot−zspec)/(1+zspec)|>0.1. mumfluxtomakeaneffectiveK-correctiontotheiflux.Thefirst (3) Exclude SNethat do not have i-band lightcurve data that ex- estimateofredshiftisgivenby tends to 12 days after maximum light in the estimated SN rest- frame.Thisenablestherefinementofthephoto-zestimatedusing z0 =c +c g +c r +c i +c z +c i2 +c i3 (1) phot 1 2 f 3 f 4 f 5 f 6 f 7 f thefluxesatmaximumlightalone. whereg = 2.5log(f ),r =2.5log(f ),i = 2.5log(f ),and Wethenapplythephoto-zestimatorasfollows: f g f r f i z = 2.5log(f ),andf ,f ,f ,f arefluxesincounts,normal- (1) Divide the SNe according to the passbands in which the SN f z g r i z izedtosomefiducialzeropoint,ingrizattheepochofimaximum magnitudesatmaximumlightareavailable. flux. (2) For each set of SNe with photometry in the same passbands, Next, thephoto-z estimator calibrateseach SNIainitsesti- constructtheinitialphoto-zestimategivenby matedrest-frameusing n−1 ∆i15 =2.5log(fi15d/fi), (2) zp0hot = c1+ cj+1(mp,j−mp,j+1) wheref15d istheibandfluxat15daysaftertheifluxmaximum Xj=1 intheesitimatedrest-frame,correspondingtotheepochof∆t15d = n−1 + c (m −m )2 15(1+z0 )daysaftertheepochofifluxmaximum. n+j p,j p,j+1 phot Thefinalestimateforthephotometricredshiftisgivenby Xj=1 +c i +c i 2+c i 3 (4) 8 2n p 2n+1 p 2n+2 p zphot = cipi, (3) wheremp,jisthemagnitudeatmaximumlightinthej-thpassband, Xi=1 ipisthemagnitudeatmaximumlightintheiband,nisthenumber of filters or passbands with available photometry, and {c }, j = j cutsaidedbyhost-galaxyredshiftswith0.05 < z < 0.55.Thisenabled 1,2,...,2n+2,arethecoefficientstobeestimatedfromusingthe themtoachievetheSNIaclassificationefficiencyof70.8%,withonly3.9% trainingsetofSNewithspectroscopicredshifts. contaminationfromcore-collapseSNe. (3)Next,calibrateeachSNIainitsestimatedrest-frameusing (cid:13)c 0000RAS,MNRAS000,000–000 PhotometricRedshiftEstimatorfor SNeIa fromLSST 3 ∆i =i −i (5) 3 SIMULATIONOFDATA 12 12d p where i is the i band magnitude at 12 days after the i maxi- ThenumberandlocationoftheLSSTdeepdrillingfieldsarestill 12d mumlightintheestimatedrest-frame,correspondingtotheepoch tobedetermined; for ageneral discussion, seetheLSSTScience of ∆t12d = 12(1+z0 ) days after the epoch of i maximuml Book.4 Assuming a plausible scenario of 10 fields covering 90 phot light. square degrees, we obtained a set of 55,422 simulated SNe with photometricdataincludingmagnitudeuncertainties,generatedus- Thefinalestimateforthephotometricredshiftisgivenby ingtheSNANApackage(Kessleretal.2009b)withtheLSSTfil- 2n+3 ters.Wehaveassumed10yearsofobservationsontheLSSTdeep- zphot = cjpj, (6) drillingfields.WehaveusedmeasuredratesofSNIa(Dildayetal. Xj=1 2008)asinputtothesimulations,andimposedtherequirementthat threeLSSTfiltershaveaSNRgreaterthan5(whichgivestwocolor where the data vector p = {1,(mp,1 − mp,2),(mp,2 − measurementsessentialforphoto-zestimates). mp,3),...,(mp,n−1 − mp,n),(mp,1 − mp,2)2,(mp,2 − Wehaveapplied0.005magofsmearingtothebandpass ze- mp,3)2,...,(mp,n−1 − mp,n)2,ip,i2p,i3f,∆i12}. The coeffi- ropoints; this simulates the variations due to the atmosphere. We cientscj (j = 1,2,...,2n+3) arefound byusing atrainingset donotincludeLSSTPhotonSimulatoreffectsorsystematicband- ofSNeIawithlightcurvesinnpassbands andmeasuredspectro- passzeropoint shiftsatpresent.5 Theseeffectsareexpectedtobe scopicredshifts.Weusethesamemodifiedjackknifetechniqueas smallerthanthevariationsduetotheatmosphere. inWang, Narayan, and Wood-Vasey (2007) toestimatethe mean Toexcludeincompleteorverynoisydata,wemakeafewba- andthecovariancematrixofcj (seeSec.4). siccutsfordataquality.Only55,414ofthe55,422simulatedSNe The improvements that we have made to the photo-z havepeakimags,andonly49,993haveibandlightcurves.Requir- estimator in this work reduces the estimated errors on the ingthattheilightcurvedataincludeinfooftheipeakandextend photo-z’s, σzphot/(1 + zphot), from 2.5% to 2%, compared to to12daysintheestimatedSNrestframe,andthatallthepeakmag- Wang,Narayan,&Wood-Vasey (2007). More importantly, it re- nitudeshaveerrorslessthan0.2magnitudes,wearriveatasample ducesthebiasinzphot (themeanofzphot−zspec),from−1.5× of29,702simulatedSNe.Thedataqualitycutsthatwehavemade 10−3to−9×10−5(areductionfactorof16.67). herearelessstrictthatthosemadebycurrentsurveys;nevertheless wefindthemtobesufficientbecauseofthehigherqualityphotom- etry expected from the LSST. We will use this sample of 29,702 SNe Ia that have passed our data quality cut in the remainder of thispaper. 2.3 Photo-zEstimatorUsingColorsOnly We now describe our Type Ia SN light curve simulations SinceourultimategoalistouseSNeIawithphotometrytoprobe in greater technical detail. We employ the SNANA package cosmology,itisdesirabletohaveaphoto-zestimatorthatdoesnot (Kessleretal.2009b)tosimulatethelightcurvesusingtheSALT2 usetheibandfluxinformation,toreducethelikelihoodofpossible Type Ia SN model. 6 The SNANA package was first used by doublecountingofdistanceinformation.NotethatSNIacolorsare the LSST collaboration to forecast SN observations (Abelletal. alsousedinfittingforcosmology,onemayarguethatincludingthe 2009), and has been used extensively by the SDSS collabora- ibandfluxinformationisnomoredouble-countingthanincluding tion(Kessleretal.2009a),toforecastobservationsfortheDarkEn- SNIacolors. However, theiband fluxof aSNIaisclosely cor- ergySurvey(Bernsteinetal.2012),andformanyothersystematic relatedwithitsdistancefromus,sinceweareusingthebrightness studiesforsupernovacosmology.ThespecificSALT2modelused ofSNeIaasdistanceindicators.SNcolorisalsousedinthedis- is the extended version of the Guy 2010 model (Guyetal. 2007, tanceestimation,butonlyforthecorrectiontothedistance,soitis 2010).TheSALT2modelrest-framefluxF(p,λ)asafunctionof amuchsmallereffectcomparedtotheSNbrightness.Finally,the phasepandwavelengthλ,isgiveninequation8.Thetwospectral estimationofphotometricredshiftsaremadepossiblebytheuseof timeseries,M0andM1,andthecolorlawCLarepartofthespe- colors,thustheyareessentialingredientsinanyphotometricred- cificSALT2inputmodel.Theparametersx0,x1,c,arerandomly shiftestimator.Therefore,havinganestimatorforSNIaphotomet- drawnfromdistributionsthathavebeenfitpreviouslytoTypeIaSN ricredshiftsthatusescolorsonly(theminimalingredients)enables dataincludingtheeffectsofdust extinction.Giventheseparame- a more robust approach to probing cosmology using photometric terstherest-framefluxasafunctionofphaseisavailableforuse. SNeIa. The redshift is likewise randomly drawn from a previously mea- Wearriveataphoto-zestimatorusingcolorsonlysimplyby sured distribution, and the observer-frame flux is integrated with omittingthelast4termsinEq.(6).Thusthesimplifiedphoto-zes- theLSSTfiltertransmissions. timatorthatusescolorsonlyisgivenby F(p,λ)=x [M (p,λ)+x M (p,λ)]e−cCL(λ). (8) 0 0 1 1 n−1 OursampleofsimulatedLSSTSNeIaisrepresentativeofdata zc = c + c (m −m ) phot 1 j+1 p,j p,j+1 expectedfromtheLSST,basedonourcurrentknowledgeofSNe Xj=1 n−1 + cn+j(mp,j−mp,j+1)2 (7) 4 http://www.lsst.org/lsst/scibook Xj=1 5 TheLSSTPhotonSimulator(seehttp://lsstdesc.org/WorkingGroups/PhoSim) includes a very detailed simulation of the LSST hardware, and takes a wherem isthemagnitudeatmaximumlightinthej-thpassband, p,j starorgalaxylocationandbrightnessandpropagatesthelightthroughthe nisthenumberoffiltersorpassbandswithavailablephotometry, opticsandcamera. and{cj},j =1,2,...,2n−1,arethecoefficientstobeestimated 6 TheSALT2modelweareusingisthemostrecentlyupdatedmodelavail- fromusingthetrainingsetofSNewithspectroscopicredshifts. able,withthelatestdata. (cid:13)c 0000RAS,MNRAS000,000–000 4 Wang,Gjergo, &Kuhlmann Ia. The SNANA simulations of SNe Ia have been heavily tested fitting,andareusedasavalidationsetfortheanalyticphoto-zesti- onSDSSphotometricdatauptoz < 0.7(see,e.g.,Hlozeketal. mator. (2012);Campbelletal.(2013)),andonSNLSdatauptoz <1.0. Table1showsthatweneed 1000SNIaspectraforthetrain- Thisissimilartotheredshiftrangeweareusing. ingsetsforthe29,702 simulatedSNeIathat satisfyour minimal dataqualitycuts(seeSec.3).WhentherealLSSTphotometricSN Iadataareavailable,wecanchoosethetrainingsetineachcolor groupdescribedinTable1inarandomfashion,whileensuringthat 4 RESULTS theSNeIachosenforthetrainingsetspanstherequiredcolorand 4.1 Photo-z’susingSNIacolorsandibandpeakflux magnituderange.Thenspectroscopicredshiftscanbeobtainedfor theSNeIainthetrainingsets. We use a slightly modified version of the jackknife technique Even1000SNIaspectrawillrequiresubstantialobservational (Lupton1993)toestimatethemeanandthecovariancematrixof resources. The sizes of the training sets can be reduced to meet cj.FromthetrainingsetcontainingN SNeIa,weextractN sub- theconstraintsof theavailableresources, whichmaydegrade the sampleseachcontainingN−1SNeIabyomittingoneSNIa.The accuracyandprecisionofthephotometricredshifts.However,the coefficientsc(s) (j = 1,2,...,2n+3)forthes-thsubsampleare performance of the photometric redshifts can be recovered when j foundbyamaximumlikelihoodanalysismatchingthepredictions thetrainingsetsareexpandedlaterviaSNIahostgalaxyredshift ofEq.(6)withthespectroscopicredshifts. measurements. Two strategies can be used to reduce the number Themeanofthecoefficientscj(j =1,2,...,2n+3)aregiven ofSNIaspectraneededforthetrainingsets:(1)RemovetheSNe by Iabelongingtothecolorgroupscontainingverysmallfractionsof theoverallsample(G16,G22,G61,andperhapsG21inTable1). N hc i= 1 c(s). (9) Notethattheseminoritycolorgroupsrequireamuchlargerfraction j N j ofspectroscopicredshifts,andhavelesswellestimatedphoto-z’s. s=1 X Dropping these will save resources (100 less spectroscopic red- Notethatthisisrelatedtotheusual“bias-correctedjackknifeesti- shifts) with minimal impact on the cosmological constraints. (2) mate”forc ,cJ,asfollows: i i Reduce the sizes of the training sets of the other color groups as cJ ≡cN +(N −1) cN −hc i , (10) needed. j j j j Inapplying thephoto-z estimator tosimulateddata,wefind where cN are estim(cid:0)ated from (cid:1)the entire training set (with N thatforeachgroupofSNewithagivensetofavailablephotomet- j SNe Ia). Wang,Narayan,&Wood-Vasey (2007) found that for ricpassbands,applyingasinglefittingformulaetoitstrainingset smalltrainingsets(withN <20)thatincludeSNeIaatz∼0,cJ mayleadtosubstructureintheestimatedz .Therefore,wehave j phot givebiasedestimatesofc bygivingtoomuchweighttotheSNIa dividedeachgroupintosubgroupsasshowninTable1,andderived j with the smallest redshift. For training sets not including nearby thephoto-zestimatorforeachsubgroupusingitsowntrainingset. SNeIa, hc iand cJ areapproximately equal. Wehavechosen to Table1tabulatestheresultant precision andaccuracy of our j j usehc ifromEq.(9)asthemeanestimatesforc toavoidbiased photo-zestimatorforeachcolorgroup.Wemeasureprecisionwith j j z forSNeIaatzclosetozero(Wang,Narayan,&Wood-Vasey σ(z − z )/(1 + z , and the accuracy by the mean of phot phot spec spec 2007). z − z , as well as the fraction of outliers (also listed are phot spec Thecovariancematrixofc (j = 1,2,...,2n+3)aregiven thenumberofoutliersthatareflaggedashavinglargeuncertainties j by inz ). phot Fig.1shows(z −z )/(1+z )versusz forthean- N phot spec spec spec Cov(c ,c )= N−1 c(s)−hc i c(s)−hc i (11) alyticphoto-zestimatorappliedtosimulatedSNefromtheLSST, i j N i i j j with cut σ /(1+ z ) < 0.1. The cut is made for better Xs=1(cid:16) (cid:17) (cid:16) (cid:17) presentatioznp;hoontly12SNpehootutof1040ofthetrainingset,and109 Usingzphot = cjpj,wefindthat∆zphot = pj∆cj,since outof28662ofthetestsethaveσzphot/(1+zphot) > 0.1. Dif- the uncertainty in zphot is dominated by the uncertainty in cj. ferent colors indicate SNe with different photometric passbands, ThereforeestimaPtederrorinzphotis P as described in Table 1. For SNe represented by the same color, differentpointtypesrepresentsubdivisionsbasedonbrightnessto 2n+32n+3 1/2 improve precision. The histogram of the number of SNe versus dz = [p ]Cov(c ,c )[p ] , (12) phot i i j j (z −z )/(1+z ) corresponding to Fig.1 is shown in ( ) phot spec spec Xi=1 Xj=1 Fig.2. where p and p (i,j = 1,2,...2n + 3) are the i-th and j- Fig.3andFig.4arethesameasFig.1andFig.2,butforimpos- i j th components of the data vector where the data vector p = ingthecutσzphot/(1+zphot)<0.01.Thereare45outliers(with {1,(mp,1−mp,2),(mp,2−mp,3),...,(mp,n−1−mp,n),(mp,1− |(zphot−zspec)/(1+zspec)|> 0.1)inthebottompanelinFig.3 mp,2)2,(mp,2−mp,3)2,...,(mp,n−1−mp,n)2,ip,i2p,i3f,∆i12}. (the majority are from the rizY color groups G11 through G15), ThesimulatedSNearedividedintogroupsaccordingtotheir representing0.23%ofall19,640SNeIafromthetestsamplethat photometricproperties,seeTable1.Eachtrainingsetforagroup passedthiscut. of SNeconsists of thefirst100 SNeinthat group, assuming that Table 2 shows that we can arrive at photo-z’s with higher thesimulateddata arerandomly ordered. Forgroups thatcontain accuracy, precision, and purity by using the estimated errors on verysmallnumbersofSNe,weusethefirst20SNeineachgroup z to exclude SNe with large σ /(1 + z ). If we ex- phot zphot phot asthetrainingset,orincreasethenumberofSNeusedinthetrain- clude SNe with σ /(1+z ) > 0.01, we arrive at a pre- zphot phot ingsetuntilnonegativez results.Thisledustoatrainingset cisionofσ(z −z )/(1+z )=0.02,abiasinz (the phot phot spec spec phot containingatotalof1040SNeusedforfittingtheanalyticphoto-z meanofz −z )of−9×10−5,andanoutlierfraction(with phot spec estimator, anda“test set”of 28,662 SNethat arenot used inthe |(z −z )/(1+z )| > 0.1) of0.23percent (seeFig.3). phot spec spec (cid:13)c 0000RAS,MNRAS000,000–000 PhotometricRedshiftEstimatorfor SNeIa fromLSST 5 Figure2.Thedistributionof(zphot−zspec)/(1+zspec)fromFig.1. Figure1.Theperformanceoftheanalyticphoto-zestimatorappliedtosim- ulatedSNefromtheLSST,asindicatedby(zphot−zspec)/(1+zspec) versuszspec,withcutσzphot/(1+zphot) < 0.1forcleaner presenta- therearenooutliersinthetrainingset.Thereare58outliers(with tion(thenumbersofoutliersaregiveninTable1)..Differentcolorsindicate |(z −z )/(1+z )| > 0.1) in the second panel from phot spec spec SNewithdifferentphotometricpassbands,asdescribedinTable1.ForSNe thetopinFig.7(themajorityarefromtherizYcolorgroupsG11 representedbythesamecolor,differentpointtypesrepresentsubdivisions throughG15—similartoFig.3),representing0.32%ofall18,370 basedonbrightnesstoimproveprecision. SNeIafromthetestsamplethatpassedthiscut.Wedonotexpect suchasmallfractionofoutlierstohavenoticeable impact onthe cosmologicalfit;wewillinvestigatethisinfuturework. Note that for the threshold of σ /(1+z ) < 0.01, there zphot phot arenooutliersinthetrainingset.Wecanrequirethatthereareno outliers in the training set in order to arrive at this threshold for σ /(1+z ). zphot phot 5 SUMMARYANDDISCUSSION Wehave shown that a simple analytic photo-z estimator for SNe 4.2 Photo-z’susingSNIacolorsonly IacanbebuiltfortheLSST,givensuitablychosentrainingsetsof AswediscussedinSec.2.3,havinganalternativephotometricred- SNe Ia with spectroscopic redshifts that are representative of the shift estimator that uses SN Ia colors only is helps increase the general properties of SNe Ia from the LSST. While our method robustness of cosmological constraints obtained using photomet- is based on that proposed by Wang (2007), and advanced by ricSNeIa.Table1tabulatestheresultantprecisionandaccuracyof Wang,Narayan,&Wood-Vasey (2007), it represents a significant ourphoto-zestimatorusingSNIacolorsonly,foreachcolorgroup. improvement over previous work (which require the use of both Thecolorsonlyresultsaretabulatedimmediatelybelowtheresults colorsandimagnitudesofSNeIa)inenablingtheuseofSNIacol- forcolorsplusibandpeakflux(seetheprevioussubsection),and orsonly.Thiseliminatesthepossiblecomplicationsthatcanarise indicated by “Y” under the column for “colors only”. Using SN fromusingSNIabrightnessinestimatingphoto-z’s,sincethepeak colorsonlyleadstoslightlyworseprecision,butsimilaraccuracy brightnessofaSNIaiscloselycorrelatedwithitsdistancefromus. fortheresultantphoto-z’s. OursampleofsimulatedLSSTSNeIaisrepresentativeofdata Fig.5andFig.7areresultscorresponding toFig.1andFig.3, expectedfromtheLSST,basedonourcurrentknowledgeofSNe but for z obtained using Eq.(7), which uses SN Ia colors Ia.Themultiple-bandphotometryfromtheLSSTenablesustodi- phot only. Using the SN Ia colors only, we obtain a set of photo- vide the SNeIainto different sets (see Sec.2.2and Table 1). For z’s with similar quality to using SN Ia color and i band peak each set, a photo-z estimator is constructed using only quadratic flux by requiring that σ /(1 + z ) < 0.007; this leads functionsofcolors(seeEq.[7]),withtheconstantcoefficientsgiven zphot phot to a set of photo-z’s with 2 percent accuracy, a bias in z of byfittingtoatrainingsetthatcontainsamaximumof100SNeIa phot 5.9×10−4,andanoutlierfractionof0.32%.Thethresholdlevel with spectroscopic redshifts (see Table 1). Note that the division of σ /(1+z ) < 0.007 isset naturallyby requiringthat ofSNeIaintocolorgroupsisempirical,dependentontheproper- zphot phot (cid:13)c 0000RAS,MNRAS000,000–000 6 Wang,Gjergo, &Kuhlmann Figure4.Thedistributionof(zphot−zspec)/(1+zspec)fromFig.3. Figure3.ThesameasFig.1,butwithcutσzphot/(1+zphot)<0.01for improvedaccuracy,precision,andoutlierreduction. tiesofthetrainingset,assumedtoberepresentativeoftheoverall sample. InadditiontohowthephotometricSNeIashouldbegrouped, andtheperformanceofourphoto-zestimatorforeachcolorgroup, Table1containsotherhelpfulinformationaswell.Asexpected,the performanceofthephoto-zestimatorimproveswiththeincreasing numberoffiltersinwhichphotometricdataareavailable;notethat knowingthefiltersinwhichtheSNeIaarevisibleprovidesacrude estimateoftheredshiftrangeoftheSNeIa.Notsurprisingly, the performanceofthephoto-zestimatorgenerallydegradeswiththe increasingredshiftoftheSNeIa. WhileTable1listsalltheSNeIathatpassedourdataquality cut(seeSec.3),Table2showsushowtoderiveahighpuritysample ofphoto-z’sbymakingcutsontheSNeIabasedontheestimated errorsofthephoto-z’s.Thisisveryusefulsincewearesystematics limited,ratherthanstatisticslimited,inusingphotometricSNeIa forcosmology. The performance of our simple analytic SN Ia photo-z es- timator is quite impressive when applied to simulated LSST SN Ia photometric data (see Table 2). We find that the estimated er- rors on the photo-z’s, σ /(1+z ), can be used as filters zphot phot to produce a set of photo-z’s that have high precision, accuracy, and purity. Using SN Ia colors as well as SN Ia peak magnitude intheiband,weobtainasetofphoto-z’swith2percentaccuracy Figure5.Thesameas Fig.1,butforzphot obtained usingSNIacolors (withσ(z −z )/(1+z ) = 0.02),abiasinz (the only. phot spec spec phot meanofz −z )of−9×10−5,andanoutlierfraction(with phot spec |(z −z )/(1+z )|> 0.1)of0.23percent,withthere- phot spec spec (cid:13)c 0000RAS,MNRAS000,000–000 PhotometricRedshiftEstimatorfor SNeIa fromLSST 7 Figure6.Thedistributionof(zphot−zspec)/(1+zspec)fromFig.5. quirementthatσ /(1+z )<0.01.UsingtheSNIacolors zphot phot only,weobtainasetofphoto-z’swithsimilarqualitybyrequiring Figure7.ThesameasFig.5,butwithcutσzphot/(1+zphot) < 0.007 thatσzphot/(1+zphot) < 0.007; thisleadstoasetofphoto-z’s forimprovedaccuracy,precision,andoutlierreduction. with2percentaccuracy,abiasinz of5.9×10−4,andanoutlier phot fractionof0.32percent. can be obtained using LSST SNe Ia with photometry only, with Infuturework,wewillinvestigatewhethertheprecisionand photo-z’sestimatedusingthemethodpresentedinthispaper. accuracyachievedbyourphoto-zestimatorisadequateforcosmol- ogy,WewillfirstneedtosimulattemorerealisticsamplesofLSST SNe,whichincludenon-Ia’s.Wewillneedtoexpandandadvance ourphoto-zestimatorforweedingoutnon-IaSNe.Thereismuch ACKNOWLEDGMENTS worktodobeforeourphoto-zestimatorcanbeappliedtothereal Wearegrateful toMichelWood-VaseyandAlexKimforhelpful LSSTdata. discussions,andKirkGilmoreforaninternalreviewofourpaper Inprinciple,ourmethodforestimatingphoto-z’sshouldbeap- on behalf of the LSST Dark Energy Science Collaboration. YW plicabletoothersurveys,butitsperformancedependsonthepreci- wassupportedinpartbyNASAgrant12-EUCLID12-0004. sionofthephotometryofthesurveys.However,itcanstillbeused asaquickwayofestimatingphoto-z’sthatismodel-independent, and complementary to the template-based methods. The applica- REFERENCES tion of our method to non-Ia SNe and galaxies can also be ex- plored. This method for estimating photo-z’s for SNeIa was ini- Abell,P.A.etal.2009,e-printsarXiv:0912.0201 tiallyinspiredbyasimilarmethodforestimatinggalaxyredshifts Albrecht,A.,etal.,ReportoftheDarkEnergyTaskForce;available presentedbyWang,Bahcall,&Turner(1998).Itwouldbeinterest- onlineatarXiv:astro-ph/0609591v1 ingtodevelopasimplephoto-zestimatorforLSSTgalaxiesbased Astier,P.,etal.2006,A&A447,31-48(2006) onthismethod. Bernstein,J.P.etal.,AstrophysicalJournal753(2012)152 We expect that our SN photo-z estimator for the LSST will Caldwell, R. R., & Kamionkowski, M., 2009, be useful in probing dark energy using LSST SNe Ia with pho- Ann.Rev.Nucl.Part.Sci.,59,397 tometry only. It will also provide an independent cross-check Campbell,H.,etal.,2013,ApJ,763,88 for SN photo-z’s derived from other, template-based photo-z es- Dilday,B.,etal.,2008,ApJ,682,262 timators (see, e.g., Kim&Miquel (2007); Kessleretal. (2010a); Frieman,J.,Turner,M.,Huterer,D.,ARAA,46,385(2008) Palanque-Delabrouille (2010)). Our linear photo-z model is very Guzzo,L.,etal.,2008,Nature,451,541 convenient for propagating photometric uncertainties, especially Guy,J.etal.2007,Astronomy&Astrophysics,466,11 comparedtomore“black-box”typemachinelearningalgorithms. Guy,J.etal.2010,Astronomy&Astrophysics,523,A7 Infuturework,wewillexaminethecosmologicalconstraintsthat Hlozek,R.,etal.,2012,ApJ,752,79 (cid:13)c 0000RAS,MNRAS000,000–000 8 Wang,Gjergo, &Kuhlmann Figure8.Thedistributionof(zphot−zspec)/(1+zspec)fromFig.7. Kessler,R.etal.2009a,ApJS,185,32 Kessler,R.etal.2009b,PASP,121,1028 Kessler,R.etal.,2010,ApJ,717,40 Kessler, R.; Conley, A.; Jha, S.; Kuhlmann, S., arXiv:1001.5210 [astro-ph.IM] Kim,A.G.;Miquel,R.,2007,AstroparticlePhysics,28,448 Knox,L.;Song,Y.-S.;Tyson,J.A.,2006,PRD,74,023512 Li,M.;Li,X.-D.;Wang,S.;Wang,Y.,2011,Commun.Theor.Phys., 56,525 Lupton, R., 1993, “Statistics in Theory and Practice”, Princeton UniversityPress Palanque-Delabrouille,N.,etal.,2010,A&A,514,A63 Perlmutter,S.,etal.,AstrophysicalJournal517(1999)565 Ratra,B.,Vogeley,M.S.,2008,Publ.Astron.Soc.Pac.,120,235 Riess,A.,etal.,Astron.J.116(1998)109 Sako,M.,Bassett,B.,Connolly,B.,etal.2011,ApJ,738,162 Uzan,J.-P.2010,GeneralRelativityandGravitation,42,2219 Wang,Y.;Bahcall,N.;Turner,E.L.,1998,AJ,116,2081 Wang,Y.,2007,ApJLett.,654,123 Wang,Y.,2008,JCAP,05,021 Wang,Y.,DarkEnergy,Wiley-VCH(2010) Wang,Y.;Narayan,G.;Wood-Vasey,M.,2007,MNRAS,382,377 (2007) Weinberg, D. H.; Mortonson, M. J.; Eisenstein, D.J.; Hirata, C.; Riess,A.G.;Rozo,E2013,PhysicsReports,530,87 (cid:13)c 0000RAS,MNRAS000,000–000 PhotometricRedshiftEstimatorfor SNeIa fromLSST 9 set bands subdivision symbolinFig.1 Ns Ntest colors σ 1∆+zz hzphot−zi outliers flagged &Fig.5 only training,test training,test training,test intest (cid:2) (cid:3) G11 rizY i>24.8 redfilledcircles 100 2904 N .0255, .0299 −2.6E-7, −.0074 0,22 15 Y .0264, .0261 −1.6E-7, −.0032 0,8 0 G12 rizY i=[24.5,24.8) redemptycircles 100 3060 N .0308, .0280 −8.1E-8, −.0039 1,11 0 Y .0313, .0280 −6.0E-7, −.0051 1,14 0 G13 rizY i=[24,24.5),r>25.2 redfilledtriangles 100 4184 N .0274, .0290 2.5E-7, −.0017 0,25 0 Y .0280, .0289 −1.0E-7, −8.7E-4 1,26 0 G14 rizY i=[24,24.5),r<25.2 redemptytriangles 100 1505 N .0301, .0369 1.1E-7, 3.5E-5 1,23 4 Y .0306, .0362 −6.5E-8, 6.1E-4 1,22 2 G15 rizY i=[23,24) redfilledsquares 100 4900 N .0279, .0346 1.1E-7, −8.5E-4 0,75 0 Y .0292, .0352 −3.2E-7, .0021 0,92 0 G16 rizY i<23 redemptysquares 40 53 N .0408, .0526 −7.1E-8, −.033 1,4 2 Y .0494, .0612 −2.6E-8, −.039 2,5 3 G21 izY i>24.5 bluefilledcircles 20 174 N .0202, .0472 −1.0E-7, −.0097 0,6 0 Y .0251, .0393 1.4E-8, .0032 0,3 0 G22 izY i<24.5 blueemptycircles 20 18 N .055, .108 −1.3E-8, −.068 1,7 2 Y .0627, .0798 4.3E-8, −.0508 2,5 0 G31 grizY i>23.5 greenfilledcircles 100 2508 N .0163, .0196 −1.5E-7, .0023 0,3 2 Y .0165, .0192 −3.0E-8, .0035 0,1 0 G32 grizY i=[23.1,23.5) greenemptycircles 100 3242 N .0122, .0155 2.1E-7, −.0027 0,2 0 Y .0125, .0157 1.6E-7, −.0016 0,3 0 G33 grizY i<23.1 greenemptytriangles 100 3888 N .0137, .0179 2.0E-7, −.0069 0,4 0 Y .0151, .0183 −3.8E-8, −.0025 0,6 0 G4 griz cyanfilledcircles 50 480 N .0055, .0229 2.7E-8, .0018 0,8 6 Y .0059, .0421 −5.7E-8, .0088 0,11 9 G5 ugriz magentafilledcircles 50 1361 N .0048, .0094 −1.9E-8, −5.2E-4 0,1 1 Y .0063, .0123 7.2E-8, 9.6E-4 0,1 0 G61 ugri r>21 blackemptytriangles 20 75 N .0049, .048 −1.1E-7, .0091 0,4 4 Y .0097, .0507 −2.1E-8, −.010 0,4 1 G62 ugri r<21 blackemptysquares 40 310 N .0082, .026 −2.1E-7, .0019 0,1 1 Y .0168, .0319 8.5E-9, .0039 0,6 1 Table1.DivisionofSNeintosetsaccordingtoavailablephotometricpass- bands,andintosubsetsineachsetforimprovedprecision.The“outliers” columnindicatesthenumberofSNeinthetrainingsetandtestsetthathave (zphot−zspec)/(1+zspec) >0.1.The“flaggedintest”columnindi- (cid:12)catesthenumberofoutliersinth(cid:12)etestsetthathaveσzphot/(1+zphot)> (cid:12)0.1. (cid:12) (cid:13)c 0000RAS,MNRAS000,000–000 10 Wang,Gjergo,& Kuhlmann set 1σ+zzmmpphhoott < colorsonly Ntot Ncut σ 1∆+zz hzphot−zi flaggedoutlier outliers training 100 N 1040 0 .02(cid:2)41 (cid:3) −9.6E-8 0 4 Y 1040 0 .0259 −1.8E-6 0 7 test 100 N 28662 0 .0270 −.0027 0 196(0.68%) Y 28662 0 .0271 −6.9×10−4 0 207(0.72%) training 0.1 N 1028 12 .0236 −3.1E-5 0 4 Y 1028 12 .0253 −4.2E-5 1 6 test 0.1 N 28553 109 .0261 −.0024 37 159(0.56%) Y 28613 49 .0265 −7.9×10−4 15 192(0.67%) training 0.05 N 1011 29 .0229 −.00022 1 3 Y 1017 23 .0242 −5.1E-4 3 4 test 0.05 N 28327 335 .0257 −.0021 53 143(0.50%) Y 28499 163 .0262 −6.8×10−4 31 176(0.62%) training 0.02 N 918 122 .0204 −.00073 3 1 Y 949 91 .0221 −3.0E-4 5 2 test 0.02 N 26606 2056 .0242 −.0010 95 101(0.38%) Y 27480 1182 .0250 −3.0×10−4 74 133(0.48%) training 0.01 N 705 335 .0173 −.00020 4 0 0.007 Y 636 404 .0175 −4.3E-4 7 0 test 0.01 N 19640 9022 .0212 −9.0E-5 151 45(0.23%) 0.007 Y 18370 10292 .0213 5.9×10−4 149 58(0.32%) Table2.Obtainingsetsofphoto-z’s withhigheraccuracy, precision, and puritybyusingtheestimated errors onzphot toexclude SNewithlarge σzphot/(1+zphot). (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.