ebook img

Analytic combinatorics PDF

698 Pages·2005·10.478 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analytic combinatorics

ANALYTIC COMBINATORICS — ⋆ (Chapters I, II, III, IV, V, VI, VII, VIII, IX ) PHILIPPE FLAJOLET & ROBERT SEDGEWICK AlgorithmsProject DepartmentofComputerScience INRIARocquencourt PrincetonUniversity 78153LeChesnay Princeton,NJ08540 France USA ZerothEdition.FifthPrinting:October1,2005(correctedOctober2,2005) (ThistemporaryversionwillexpireonNovember15,2005) ♥♥♥♥♥♥ 2 InthiseditionofOctober2,2005: — Chapters0,1,2,3,4areinclose-to-finalform. — Chapter9isstillinpreliminaryform — Chapter10,inpreparationisnotincluded. Otherschapterareinintermediateform,waitingtoberevised. Also,bothlongandshortformsofconstructionnamesarecurrentlyused,withonedestinedtobecomethe standardeventually.Forunlabelledclasses,thedictionaryis S SEQ, M MSET, P PSET, C CYC, ≡ ≡ ≡ ≡ whileforlabelledclasses, S SEQ, P SET, C CYC. ≡ ≡ ≡ i PREFACE ANALYTICCOMBINATORICSaimsatpredictingpreciselythepropertiesoflarge structured combinatorial configurations, through an approach based extensively on analyticmethods.Generatingfunctionsarethecentralobjectsofthetheory. Analyticcombinatoricsstartsfromanexactenumerativedescriptionofcombina- torialstructuresbymeansofgeneratingfunctions,whichmaketheirfirstappearance aspurelyformalalgebraicobjects. Next, generatingfunctionsare interpretedasan- alytic objects, that is, as mappings of the complex plane into itself. Singularities determinea function’scoefficients in asymptotic form and lead to precise estimates forcountingsequences. Thischainappliestoalargenumberofproblemsofdiscrete mathematicsrelativetowords,trees,permutations,graphs,andsoon.Asuitableadap- tationofthemethodsalsoopensthewaytothequantitativeanalysisofcharacteristic parametersoflargerandomstructures,viaaperturbationalapproach. Analyticcombinatoricscanaccordinglybeorganizedbasedonthreecomponents: SymbolicMethodsdevelopssystematicrelationsbetweensomeofthemajor constructions of discrete mathematics and operations on generating func- tionswhichexactlyencodecountingsequences. ComplexAsymptoticselaboratesacollectionofmethodsbywhichonecan extract asymptotic counting information from generating functions, once theseareviewedasanalytictransformationsofthecomplexdomain.Singu- laritiesthenappeartobeakeydeterminantofasymptoticbehaviour. RandomStructuresconcernsitselfwithprobabilisticpropertiesoflargeran- domstructures. Whichpropertiesholdwith highprobability? Whichlaws govern randomness in large objects? In the context of analytic combina- torics, these questionsare treated by a deformation(addingauxiliaryvari- ables) and a perturbation(examiningthe effectof small variationsof such auxiliaryvariables)ofthestandardenumerativetheory. THEAPPROACHtoquantitativeproblemsofdiscretemathematicsprovidedbyan- alyticcombinatoricscanbeviewedasanoperationalcalculusforcombinatorics.The present book exposes this view by means of a very large number of examples con- cerningclassicalcombinatorialstructures—mostnotably,words,trees,permutations, andgraphs. Theeventualgoalisaneffectivewayofquantifyingmetricpropertiesof largerandomstructures. Givenitscapacityofquantifyingpropertiesoflargediscretestructures, Analytic Combinatorics is susceptible to many applications, within combinatorics itself, but, perhapsmoreimportantly,within otherareasof science where discrete probabilistic modelsrecurrentlysurface,likestatisticalphysics,computationalbiology,orelectri- cal engineering. Last but notleast, the analysis of algorithmsand data structuresin ii computersciencehasservedandstillservesasanimportantmotivationinthedevel- opmentofthetheory. ⋆⋆⋆⋆⋆⋆ PartA:SymbolicMethods. ThispartspecificallyexposesSymbolicCombina- torics,whichisaunifiedalgebraictheorydedicatedtosettingupfunctionalrelations betweencountinggeneratingfunctions. As it turnsout, a collection of general(and simple) theorems provide a systematic translation mechanism between combinato- rialconstructionsandoperationsongeneratingfunctions. Thistranslationprocessis a purely formal one. Precisely, as regards basic counting, two parallel frameworks coexist—one for unlabelled structures and ordinary generating functions, the other forlabelledstructuresandexponentialgeneratingfunctions. Furthermore,withinthe theory, parameters of combinatorialconfigurations can be easily taken into account byaddingsupplementaryvariables. Threechaptersthencomposethispart: ChapterI dealswithunlabelledobjects;ChapterIIdevelopsinaparallelwaylabelledobjects; ChapterIIItreatsmultivariateaspectsofthetheorysuitablefortheanalysisofparam- etersofcombinatorialstructures. ⋆⋆⋆⋆⋆⋆ PartB:Complexasymptotics. ThispartspecificallyexposesComplexAsymp- totics, which is a unified analytic theory dedicated to the process of extracting as- ymptotic information from counting generating functions. A collection of general (and simple) theorems provide a systematic translation mechanism between gener- ating functions and asymptotic forms of coefficients. Four chapters compose this part. ChapterIVservesasanintroductiontocomplex-analyticmethodsandproceeds withthetreatmentofmeromorphicfunctions,thatis,functionswhosesingularitiesare poles,rationalfunctionsbeingthesimplestcase. ChapterVdevelopsapplicationsof rationalandmeromorphicasymptoticsofgeneratingfunctions,withnumerousappli- cations related to words and languages, walks and graphs, as well as permutations. Chapter VI develops a general theory of singularity analysis that applies to a wide varietyofsingularitytypes, such as square-rootorlogarithmic,andhasapplications to trees as well as to other recursively defined combinatorial classes. Chapter VII presents applications of singularity analysis to 2-regular graphs and polynomials, treesofvarioussorts,mappings,context-freelanguages,walks,andmaps. Itcontains inparticularadiscussionoftheanalysisofcoefficientsofalgebraicfunctions. Chap- terVIIIexploressaddlepointmethods,whichareinstrumentalinanalysingfunctions withaviolentgrowthatasingularity,aswellasmanyfunctionswithonlyasingularity atinfinity(i.e.,entirefunctions). ⋆⋆⋆⋆⋆⋆ Part C: Random Structures. This part includes Chapter IX dedicated to the analysisofmultivariategeneratingfunctionsviewedasdeformationandperturbation of simple (univariate) functions. As a consequence, many important characteristics ofclassicalcombinatorialstructurescanbepreciselyquantifiedindistribution.Chap- ter??isanepilogue,whichoffersabriefrecapitulationofthemajorasymptoticprop- ertiesofdiscretestructuresdevelopedinearlierchapters. iii ⋆⋆⋆⋆⋆⋆ PartD:Appendices. AppendixAsummarizessomekeyelementaryconceptsof combinatorics and asymptotics, with entries relative to asymptotic expansions, lan- guages, and trees, amongst others. Appendix B recapitulates the necessary back- ground in complex analysis. It may be viewed as a self-contained minicourse on the subject, with entries relative to analytic functions, the Gamma function, the im- plicitfunctiontheorem,andMellintransforms. AppendixCrecallssomeofthebasic notionsofprobabilitytheorythatareusefulinanalyticcombinatorics. ⋆⋆⋆⋆⋆⋆ THIS BOOKismeanttobereader-friendly. Eachmajormethodisabundantlyil- lustratedbymeansofconcreteexamples1treatedindetail—therearescoresofthem, spanningfromafractionofapagetoseveralpages—offeringacompletetreatmentofa specificproblem.Theseareborrowednotonlyfromcombinatoricsitselfbutalsofrom neighbouringareasofscience. Withaviewofaddressingnotonlymathematiciansof variedprofilesbutalsoscientistsofotherdisciplines,AnalyticCombinatoricsisself- contained,includingampleappendicesthatrecapitulatethenecessarybackgroundin combinatoricsandcomplexfunctiontheory.ArichsetofshortNotes—therearemore than250ofthem—areinsertedinthetext2andcanprovideexercisesmeantforself- studyorforstudents’practice, aswellasintroductionsto thevastbodyof literature that is available. We have also made everyeffortto focus on core ideas ratherthan technicaldetails,supposingacertainamountofmathematicalmaturitybutonlybasic prerequisitesonthepartofourgentlereaders. Thebookisalsomeanttobestrongly problem-oriented,andindeeditcanberegardedasamanual,orevenahugealgorithm, guidingthe readerto the solution of a very large variety of problemsregardingdis- cretemathematicalmodelsofvariedorigins. Inthisspirit,manyofourdevelopments connectnicelywithcomputeralgebraandsymbolicmanipulationsystems. COURSES can be (and indeed have been) based on the book in various ways. ChaptersI–IIIonSymbolicMethodsserveasasystematicyetaccessibleintroduction to the formalside of combinatorialenumeration. As such it organizestransparently some of the rich materialfoundin treatises3 like those of Bergeron-Labelle-Leroux, Comtet,Goulden-Jackson,andStanley.ChaptersIV–VIIIrelativetoComplexAsymp- toticsprovidealargesetofconcreteexamplesillustratingthepowerofclassicalcom- plexanalysisandofasymptoticanalysisoutsideoftheirtraditionalrangeofapplica- tions.Thismaterialcanthusbeusedincoursesofeitherpureorappliedmathematics, providing a wealth of nonclassical examples. In addition, the quiet but ubiquitous presenceofsymbolicmanipulationsystemsprovidesanumberofillustrationsofthe power of these systems while making it possible to test and concretely experiment with a great many combinatorial models. Symbolic systems allow for instance for fast random generation, close examination of non-asymptotic regimes, efficient ex- perimentationwithanalyticexpansionsandsingularities,andsoon. 1Examplesaremarkedby“EXAMPLE (cid:3)”. 2Notesareindicatedby(cid:3) (cid:1). ··· 3 ··· Referencesaretobefoundinthebibliographysectionattheendofthebook. iv Our initial motivation when starting this project was to build a coherent set of methodsusefulintheanalysisofalgorithms,adomainofcomputersciencenowwell- developedandpresentedinbooksbyKnuth,Hofri,andSzpankowski,inthesurveyby Vitter–Flajolet,aswellasinourearlierIntroductiontotheAnalysisofAlgorithmspub- lishedin1996. Thisbookcanthenbeusedasasystematicpresentationsofmethods thathaveprovedimmenselyusefulinthisarea;seeinparticulartheArtofComputer ProgrammingbyKnuthforbackground.Studiesinstatisticalphysics(vanRensburg, andothers),statistics(e.g.,DavidandBarton)andprobabilitytheory(e.g.,Billingsley, Feller),mathematicallogic(Burris’book),analyticnumbertheory(e.g.,Tenenbaum), computationalbiology(Waterman’stextbook),aswellasinformationtheory(e.g.,the booksbyCover–Thomas,MacKay,andSzpankowski)pointtomanystartlingconnec- tionswith yetotherareasof science. Thebookmay thusbe usefulasa supplemen- taryreferenceonmethodsandapplicationsincoursesonstatistics,probabilitytheory, statistical physics, finite model theory, analytic number theory, information theory, computeralgebra,complexanalysis,oranalysisofalgorithms. Acknowledgements. This book would be substantially different and much less in- formative without Neil Sloane’s Encyclopedia of Integer Sequences, Steve Finch’s MathematicalConstants, Eric Weisstein’s MathWorld, and the MacTutor History of MathematicssitehostedatStAndrews. Allare(oratleasthavebeenatsomestage) freely available on the Internet. Bruno Salvy and Paul Zimmermann have devel- oped algorithms and libraries for combinatorial structures and generating functions that are based on the MAPLE system for symbolic computations and have proven to be extremely useful. We are deeply grateful to the authors of the free software Unix,Linux,Emacs,X11,TEXandLATEXaswellastothedesignersofthesymbolic manipulationsystem MAPLE forcreatinganenvironmentthathasprovedinvaluable to us. We also thankstudentsin coursesat Barcelona, Berkeley(MSRI), Bordeaux, Caen,Paris(E´colePolytechnique,E´coleNormale,University),Princeton,Santiagode Chile,Udine,andViennawhosefeedbackhasgreatlyhelpedusprepareabetterbook. Thanksfinally to numerouscolleagues for their feedback. In particular, we wish to acknowledge the support, help, and interaction provided at an incredibly high level bymembersoftheAnalysisofAlgorithms(AofA)community,withaspecialmention forHsien-KueiHwang,SvanteJanson,DonKnuth,GuyLouchard,AndrewOdlyzko, DanielPanario,HelmutProdinger,BrunoSalvy,Miche`leSoria,WojtekSzpankowski, BrigitteValle´e,andMarkWilson.StanBurrisandBrigitteValle´eespeciallyhavepro- videdcommentsthathaveledustorevisethepresentationof severalsectionsofthis book, while Svante Janson and Lo¨ıc Turbanhave providedextremelydetailed feed- backonseveralchapters,enablingustocorrectmanyerrors. Finally,supportofour homeinstitutions(INRIAandPrincetonUniversity)aswellasvariousgrants(French government,EuropeanUnionandtheALCOMProject,NSF)havecontributedtomak- ingourcollaborationpossible. PHILIPPEFLAJOLET&ROBERT SEDGEWICK October2,2005 Contents AninvitationtoAnalyticCombinatorics 1 PartA. SYMBOLICMETHODS 13 I. CombinatorialStructuresandOrdinaryGeneratingFunctions 15 I.1. Symbolicenumerationmethods 16 I.2. Admissibleconstructionsandspecifications 23 I.3. Integercompositionsandpartitions 37 I.4. Wordsandregularlanguages 47 I.5. Treestructures 61 I.6. Additionalconstructions 76 I.7. Perspective 83 II. LabelledStructuresandExponentialGeneratingFunctions 87 II.1. Labelledclasses 88 II.2. Admissiblelabelledconstructions 91 II.3. Surjections,setpartitions,andwords 98 II.4. Alignments,permutations,andrelatedstructures 110 II.5. Labelledtrees,mappings,andgraphs 115 II.6. Additionalconstructions 125 II.7. Perspective 135 III. CombinatorialParametersandMultivariateGeneratingFunctions 139 III.1. Anintroductiontobivariategeneratingfunctions(BGFs) 141 III.2. Bivariategeneratingfunctionsandprobabilitydistributions 144 III.3. InheritedparametersandordinaryMGFs 151 III.4. InheritedparametersandexponentialMGFs 163 III.5. Recursiveparameters 170 III.6. Completegeneratingfunctionsanddiscretemodels 175 III.7. Additionalconstructions 187 III.8. Extremalparameters 202 III.9. Perspective 206 PartB. COMPLEXASYMPTOTICS 209 IV. ComplexAnalysis,RationalandMeromorphicAsymptotics 211 IV.1. Generatingfunctionsasanalyticobjects 212 IV.2. Analyticfunctionsandmeromorphicfunctions 216 IV.3. Singularitiesandexponentialgrowthofcoefficients 226 v vi CONTENTS IV.4. Closurepropertiesandcomputablebounds 236 IV.5. Rationalandmeromorphicfunctions 242 IV.6. Localizationofsingularities 250 IV.7. Singularitiesandfunctionalequations 261 IV.8. Perspective 273 V. ApplicationsofRationalandMeromorphicAsymptotics 277 V.1. Regularspecificationandlanguages 278 V.2. Latticepathsandwalksontheline. 291 V.3. Thesupercriticalsequenceanditsapplications 304 V.4. Functionalequations:positiverationalsystems 311 V.5. Pathsingraphs,automata,andtransfermatrices. 318 V.6. Additionalconstructions 337 V.7. Notes 342 VI. SingularityAnalysisofGeneratingFunctions 345 VI.1. Introduction 346 VI.2. Coefficientasymptoticsforthebasicscale 350 VI.3. Transfers 357 VI.4. Firstexamplesofsingularityanalysis 362 VI.5. Inversionandimplicitlydefinedfunctions 366 VI.6. Singularityanalysisandclosureproperties 370 VI.7. Multiplesingularities 382 VI.8. TauberiantheoryandDarboux’smethod 384 VI.9. Notes 389 VII. ApplicationsofSingularityAnalysis 391 VII.1. The“exp–log”schema 392 VII.2. Simplevarietiesoftrees 398 VII.3. Positiveimplicitfunctions 414 VII.4. Theanalysisofalgebraicfunctions 419 VII.5. Combinatorialapplicationsofalgebraicfunctions 437 VII.6. Notes 451 VIII. SaddlePointAsymptotics 455 VIII.1. Preamble:Landscapesofanalyticfunctionsandsaddlepoints 456 VIII.2. Overviewofthesaddlepointmethod 459 VIII.3. Largepowers 469 VIII.4. Fourcombinatorialexamples 475 VIII.5. Admissibility 486 VIII.6. Combinatorialaveragesanddistributions 492 VIII.7. Variationsonthethemeofsaddlepoints 500 VIII.8. Notes 508 PartC. RANDOMSTRUCTURES 511 IX. MultivariateAsymptoticsandLimitDistributions 513 IX.1. Limitlawsandcombinatorialstructures 515 IX.2. Discretelimitlaws 521 IX.3. Combinatorialinstancesofdiscretelaws 528 CONTENTS vii IX.4. Continuouslimitlaws 539 IX.5. Quasi-powersandGaussianlimits 544 IX.6. Perturbationofmeromorphicasymptotics 549 IX.7. Perturbationofsingularityanalysisasymptotics 562 IX.8. Perturbationofsaddlepointasymptotics 582 IX.9. Locallimitlaws 586 IX.10. Largedeviations 590 IX.11. Non-Gaussiancontinuouslimits 593 IX.12. Multivariatelimitlaws 605 IX.13. Notes 606 PartD. APPENDICES 609 AppendixA. AuxiliaryElementaryNotions 611 AppendixB. BasicComplexAnalysis 629 AppendixC. ComplementsofProbabilityTheory 655 Bibliography 665 Index 681

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.