ebook img

Analysis on Polish Spaces and an Introduction to Optimal Transportation PDF

356 Pages·2018·3.841 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis on Polish Spaces and an Introduction to Optimal Transportation

LondonMathematicalSocietyStudentTexts89 Analysis on Polish Spaces and an Introduction to Optimal Transportation D. J. H. GARLING EmeritusReaderinMathematicalAnalysis,UniversityofCambridge, andFellowofStJohn’sCollege,Cambridge Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108421577 DOI:10.1017/9781108377362 ©D.J.H.Garling2018 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2018 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Garling,D.J.H.,author. Title:AnalysisonPolishspacesandanintroductiontooptimal transportation/D.J.H.Garling(UniversityofCambridge). Othertitles:LondonMathematicalSocietystudenttexts;89. Description:Cambridge,UnitedKingdom;NewYork,NY:CambridgeUniversity Press,2018.|Series:LondonMathematicalSocietystudenttexts;89| Includesbibliographicalreferencesandindex. Identifiers:LCCN2017028186|ISBN9781108421577(hardback;alk.paper)| ISBN1108421571(hardback;alk.paper)|ISBN9781108431767(pbk.;alk.paper)| ISBN1108431763(pbk.;alk.paper) Subjects:LCSH:Polishspaces(Mathematics)|Mathematicalanalysis.| Transportationproblems(Programming)|Topology. Classification:LCCQA611.28.G362018|DDC514/.32–dc23 LCrecordavailableathttps://lccn.loc.gov/2017028186 ISBN978-1-108-42157-7Hardback ISBN978-1-108-43176-7Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:06, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 Contents Introduction 1 PARTONE TOPOLOGICALPROPERTIES 7 1 GeneralTopology 9 1.1 TopologicalSpaces 9 1.2 Compactness 15 2 MetricSpaces 18 2.1 MetricSpaces 18 2.2 TheTopologyofMetricSpaces 21 2.3 Completeness:Tietze’sExtensionTheorem 24 2.4 MoreonCompleteness 27 2.5 TheCompletionofaMetricSpace 29 2.6 TopologicallyCompleteSpaces 31 2.7 Baire’sCategoryTheorem 33 2.8 LipschitzFunctions 35 3 PolishSpacesandCompactness 38 3.1 PolishSpaces 38 3.2 TotallyBoundedMetricSpaces 39 3.3 CompactMetrizableSpaces 41 3.4 LocallyCompactPolishSpaces 47 4 Semi-continuousFunctions 50 4.1 TheEffectiveDomainandProperFunctions 50 4.2 Semi-continuity 50 4.3 TheBre´zis–BrowderLemma 53 4.4 Ekeland’sVariationalPrinciple 54 v Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 vi Contents 5 UniformSpacesandTopologicalGroups 56 5.1 UniformSpaces 56 5.2 TheUniformityofaCompactHausdorffSpace 59 5.3 TopologicalGroups 61 5.4 TheUniformitiesofaTopologicalGroup 64 5.5 GroupActions 66 5.6 MetrizableTopologicalGroups 67 6 Ca`dla`gFunctions 71 6.1 Ca`dla`gFunctions 71 6.2 TheSpace(D[0,1],d∞) 72 6.3 TheSkorohodTopology 73 6.4 TheMetricd 75 B 7 BanachSpaces 79 7.1 NormedSpacesandBanachSpaces 79 7.2 TheSpaceBL(X)ofBoundedLipschitzFunctions 82 7.3 IntroductiontoConvexity 83 7.4 ConvexSetsinaNormedSpace 86 7.5 LinearOperators 88 7.6 FiveFundamentalTheorems 91 7.7 ThePetalTheoremandDanesˇ’sDropTheorem 95 8 HilbertSpaces 97 8.1 Inner-productSpaces 97 8.2 HilbertSpace;NearestPoints 101 8.3 OrthonormalSequences;Gram–SchmidtOrthonormalization 104 8.4 OrthonormalBases 107 8.5 TheFre´chet–RieszRepresentationTheorem;Adjoints 108 9 TheHahn–BanachTheorem 112 9.1 TheHahn–BanachExtensionTheorem 112 9.2 TheSeparationTheorem 116 9.3 WeakTopologies 118 9.4 Polarity 119 9.5 WeakandWeak*TopologiesforNormedSpaces 120 9.6 Banach’sTheoremandtheBanach–AlaogluTheorem 124 9.7 TheComplexHahn–BanachTheorem 125 Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 Contents vii 10 ConvexFunctions 128 10.1 ConvexEnvelopes 128 10.2 ContinuousConvexFunctions 130 11 SubdifferentialsandtheLegendreTransform 133 11.1 DifferentialsandSubdifferentials 133 11.2 TheLegendreTransform 134 11.3 SomeExamplesofLegendreTransforms 137 11.4 TheEpisum 139 11.5 TheSubdifferentialofaVeryRegularConvexFunction 140 11.6 Smoothness 143 11.7 TheFenchel–RockafellerDualityTheorem 148 11.8 TheBishop–PhelpsTheorem 149 11.9 MonotoneandCyclicallyMonotoneSets 151 12 CompactConvexPolishSpaces 155 12.1 CompactPolishSubsetsofaDualPair 155 12.2 ExtremePoints 157 12.3 Dentability 160 13 SomeFixedPointTheorems 162 13.1 TheContractionMappingTheorem 162 13.2 FixedPointTheoremsofCaristiandClarke 165 13.3 Simplices 167 13.4 Sperner’sLemma 168 13.5 Brouwer’sFixedPointTheorem 170 13.6 Schauder’sFixedPointTheorem 171 13.7 FixedPointTheoremsofMarkovandKakutani 173 13.8 TheRyll–NardzewskiFixedPointTheorem 175 PARTTWO MEASURESONPOLISHSPACES 177 14 AbstractMeasureTheory 179 14.1 MeasurableSetsandFunctions 179 14.2 MeasureSpaces 182 14.3 ConvergenceofMeasurableFunctions 184 14.4 Integration 187 14.5 IntegrableFunctions 188 Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 viii Contents 15 FurtherMeasureTheory 191 15.1 RieszSpaces 191 15.2 SignedMeasures 194 15.3 M(X),L1andL∞ 196 15.4 TheRadon–NikodymTheorem 199 15.5 OrliczSpacesandLpSpaces 203 16 BorelMeasures 210 16.1 BorelMeasures,RegularityandTightness 210 16.2 RadonMeasures 214 16.3 BorelMeasuresonPolishSpaces 215 16.4 Lusin’sTheorem 216 16.5 MeasuresontheBernoulliSequenceSpace(cid:2)(N) 218 16.6 TheRieszRepresentationTheorem 222 16.7 TheLocallyCompactRieszRepresentationTheorem 225 16.8 TheStone–WeierstrassTheorem 226 16.9 ProductMeasures 228 16.10DisintegrationofMeasures 231 16.11TheGluingLemma 234 16.12HaarMeasureonCompactMetrizableGroups 236 16.13HaarMeasureonLocallyCompactPolishTopologicalGroups 238 17 MeasuresonEuclideanSpace 243 17.1 BorelMeasuresonRandRd 243 17.2 FunctionsofBoundedVariation 245 17.3 SphericalDerivatives 247 17.4 TheLebesgueDifferentiationTheorem 249 17.5 DifferentiatingSingularMeasures 250 17.6 DifferentiatingFunctionsinbv 251 0 17.7 Rademacher’sTheorem 254 18 ConvergenceofMeasures 257 18.1 TheNorm(cid:3).(cid:3) 257 TV 18.2 TheWeakTopologyw 258 18.3 ThePortmanteauTheorem 260 18.4 UniformTightness 264 18.5 Theβ Metric 266 18.6 TheProkhorovMetric 269 18.7 TheFourierTransformandtheCentralLimitTheorem 271 18.8 UniformIntegrability 276 18.9 UniformIntegrabilityinOrliczSpaces 278 Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 Contents ix 19 IntroductiontoChoquetTheory 280 19.1 Barycentres 280 19.2 TheLowerConvexEnvelopeRevisited 282 19.3 Choquet’sTheorem 284 19.4 Boundaries 285 19.5 PeakPoints 289 19.6 TheChoquetOrdering 291 19.7 Dilations 293 PARTTHREE INTRODUCTIONTOOPTIMAL TRANSPORTATION 297 20 OptimalTransportation 299 20.1 TheMongeProblem 299 20.2 TheKantorovichProblem 300 20.3 TheKantorovich–RubinsteinTheorem 303 20.4 c-concavity 305 20.5 c-cyclicalMonotonicity 308 20.6 OptimalTransportPlansRevisited 310 20.7 Approximation 313 21 WassersteinMetrics 315 21.1 TheWassersteinMetricsW 315 p 21.2 TheWassersteinMetricW 317 1 21.3 W Compactness 318 1 21.4 W Compactness 320 p 21.5 W -Completeness 322 p 21.6 TheMallowsDistances 323 22 SomeExamples 325 22.1 StrictlySubadditiveMetricCostFunctions 325 22.2 TheRealLine 326 22.3 TheQuadraticCostFunction 327 22.4 TheMongeProblemonRd 329 22.5 StrictlyConvexTranslationInvariantCostsonRd 331 22.6 SomeStrictlyConcaveTranslation–InvariantCostsonRd 336 FurtherReading 339 Index 342 Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 Downloaded from https://www.cambridge.org/core. University of New England, on 19 Dec 2017 at 04:54:10, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362 Introduction Analysisisconcernedwithcontinuityandconvergence.Investigationofthese ideas led to the notions of topology and topological spaces. Once these had been introduced, they became subjects in their own right, which were investigated in fine detail to see how far the theory might lead (an excellent illustrationofthisisgivenbythefascinatingbookbySteenandSeebach[SS]). In practice, however, a great deal of analysis is concerned with what happens on a very restricted class of topological spaces, namely, the Polish spaces. A Polish space is a separable topological space whose topology is defined by a complete metric. Important examples include Euclidean space, pathwise-connectedRiemannianmanifolds,compactmetricspacesandsepa- rableBanachspaces. ThepurposeofthisbookistodevelopthestudyofanalysisonPolishspaces. It consists of three parts. The first considers topological properties of Polish spaces, and the second deals with the theory of measures on Polish spaces. Inthethirdpart,wegiveanintroductiontothetheoryofoptimaltransportation. Thismakesessentialuseoftheresultsofthefirsttwoparts,ormodificationsof them.Itwas,infact,studyofoptimaltransportationthatledtotherealization of how much its study required properties of Polish spaces, and measures onthem. There are three important advantages of restricting attention to Polish spaces. First, many of the curious complications of the general topological theory disappear. For example, a subspace of a separable topological space neednotbeseparable,whereasasubspaceofaseparablemetricspaceisalways separable.Secondly,theproofsofstandardresultsarefrequentlymucheasier inthisrestrictedsetting.Forexample,Urysohn’slemmafornormaltopological spaces is quite delicate, whereas it is very easy for metric spaces. Thirdly, Polish spaces enjoy some very important properties. Thus it follows from Alexandroff’s theorem that a topological space is a Polish space if and only 1 Downloaded from https://www.cambridge.org/core. University of New England, on 14 Dec 2017 at 03:53:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362.001 2 Introduction if it is homeomorphic to a G subset of the Hilbert cube H = [0,1]N, which δ is a compact metrizable space. From this, or directly, it follows that a Borel measureonaPolishspaceistight(Ulam’stheorem:themeasureofaBorelset canbeapproximatedfrombelowbythemeasuresofcompactsetscontainedin it).ItalsomeansthatwecanpushforwardaBorelmeasureonaPolishspace X to a Borel measure on a compact metric space containing X. This greatly simplifies both the measure theory and also the construction of measures. In fact,Ibelievethatalmostalltheprobabilitymeasuresthatariseinpracticeare Borel measures on Polish spaces; one important exception, which we do not considerorneed,isthetheoryofuniformcentrallimittheorems. One major advantage of restricting attention to Polish spaces is that it is not necessary to appeal to the axiom of choice. Instead, we proceed by induction,usingtheaxiomofdependentchoice;wemakeaninfinitesequence ofdecisions,eachpossiblydependentonwhathasgonebefore. Inanalysis,thereareafewfundamentalresultswhichrequiretheaxiomof choice.ThefirstisTychonoff’stheorem,whichstatesthatanarbitraryproduct ofcompacttopologicalspaces,withtheproducttopology,iscompact.Wedo notprovethis,oruseit.Ontheotherhand,wedoprove,anduse,thefactthat acountableproductofcompactmetrizablespacesiscompactandmetrizable. Secondly, there are two fundamental results of linear analysis which need theaxiomofchoice,usingZorn’slemma.ThefirstoftheseistheHahn–Banach theorem (together with the separation theorem). Using induction, we prove weak forms of these, for separable normed spaces; this is sufficient for our purposes. But for completeness’ sake we also give the classical results, using Zorn’s lemma;Herewefirstprovetheseparationtheorem,showingthatitessentially dependsupontheconnectednessoftheunitcircleT,andthenderivetheHahn– Banachtheoremfromit. The other fundamental result which requires the axiom of choice is the Krein–Mil’man theorem, which states that every weakly compact convex subset K has an extreme point. Again, we only need, and use, the result in thecasewhereKismetrizable,andweprovethiswithouttheaxiomofchoice. The fact that we avoid using the axiom of choice suggests that the proofs should, in some sense, be less abstract and more constructive. Unfortunately, this is not the case; the arguments that are used are frequently indirect (consider the collection of all sets with a particular property), so that for example a typical Borel subset of a Polish space does not have a simple description. Let us now describe the contents of the three parts of this book in more detail. Downloaded from https://www.cambridge.org/core. University of New England, on 14 Dec 2017 at 03:53:20, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108377362.001

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.