ebook img

Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach PDF

271 Pages·2013·1.972 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach

Probability and Its Applications PublishedinassociationwiththeAppliedProbabilityTrust Editors: S.Asmussen, J.Gani,P.Jagers, T.G. Kurtz Probability and Its Applications TheProbabilityandItsApplicationsseriespublishesresearchmonographs,withtheexpos- itory quality to make them useful and accessible to advanced students, in probability and stochasticprocesses,withaparticularfocuson: − FoundationsofprobabilityincludingstochasticanalysisandMarkovandotherstochastic processes − Applicationsofprobabilityinanalysis − Pointprocesses,randomsets,andotherspatialmodels − Branchingprocessesandothermodelsofpopulationgrowth − Geneticsandotherstochasticmodelsinbiology − Informationtheoryandsignalprocessing − Communicationnetworks − Stochasticmodelsinoperationsresearch Forfurthervolumes: www.springer.com/series/1560 Ciprian A. Tudor Analysis of Variations for Self-similar Processes A Stochastic Calculus Approach CiprianA.Tudor UFRMathématiques UniversitédeLille1 Villeneuved’Ascq France ISSN1431-7028 ProbabilityandItsApplications ISBN978-3-319-00935-3 ISBN978-3-319-00936-0(eBook) DOI10.1007/978-3-319-00936-0 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013945532 MathematicsSubjectClassification: 60F05,60H05,60G18 ©SpringerInternationalPublishingSwitzerland2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) TothememoryofmyfatherConstantinTudor To mydaughterAnna-Maria Preface This monograph is an introduction to the stochastic analysis of self-similar pro- cessesbothintheGaussianandnon-Gaussiancase. The text is mostly self-contained and should be accessible to graduate students and researchers with a basic background in probability theory and stochastic pro- cesses. Although Part II of the monograph is based on the Malliavin calculus, the toolsusedarebasicandconsequentlyreaderswhoarenotfamiliarwiththetheory willneverthelessbeabletofollowtheexposition. The majority of these notes were completed during my research visits to sev- eral university and research centers such as Purdue University, Keio University, Universidad de Valparaíso, Humboldt Universität zu Berlin, Centre Interfacultaire BernoulliatLausanne,RitsumeikanUniversity,UniversityofTrento,CharlesUni- versity, University of Sydney and Centre de Recerca Matemàtica in Barcelona. I wouldliketothankmycolleaguesFrederiViens,MakotoMaejima,SoledadTorres, Peter Imkeller, Robert Dalang, Marco Dozzi, Francesco Russo, Arturo-Kohatsu- Higa, Stefano Bonaccorsi, Bohdan Maslowski, Qiying Wang, Xavier Bardina and MartaSanz-Soléfortheirkindinvitations. Apartofthematerialpresentedinthisbookiscontainedinthedoctoralthesesof myformerandpresentstudentsKhalifaEs-Sebaiy,SolesneBourguin,JorgeClarke DelaCerdaandAlexisFauth. Introduction Self-similarprocessesarestochasticprocessesthatareinvariantindistributionun- der a suitable scaling of time and space. This property is crucial in applications suchasnetworktrafficanalysis,mathematicalfinance,astrophysics,hydrologyand imageprocessing.Forthisreason,theiranalysishaslongconstitutedanimportant researchdirectioninprobabilitytheory.Severalmonographs,suchas[75]or[160], provide a complete analysis of the properties of this class of stochastic processes and many other research papers and monographs focus on the practical aspects of vii viii Preface self-similarity.Abibliographicalguidetotheapplicationsofself-similarprocesses is provided in [191]. In the last few decades, new developments in self-similarity havebeenobtained,includingtheappearanceof newclasses of(Gaussianornon- Gaussian)self-similarprocessesandnewtechniquestostudytheirbehavior,related tothestochasticcalculus(especiallytheMalliavincalculus).Theaimofthistextis tosurveythesenewdevelopments. Thismonographcomprisestwoparts,eachofthemdividedintoseveralchapters, andAppendicesA,B,C. InPartIwediscussthebasicpropertiesofseveralclassesof(Gaussianornon- Gaussian)self-similarstochasticprocesses.Thispartisdividedintofourchapters. Chapter1focusesonfractionalBrownianmotionandrelatedprocesses.Fractional Brownianmotionisthemostwellknownself-similarprocesswithstationaryincre- ments.ItincludesstandardBrownianmotionasaparticularcase.Theapplications of this process are now widely recognized. We survey the basic properties of the processandseveralotherrelatedprocessesthathaverecentlyemergedinscientific research,suchasbifractionalBrownianmotionandsubfractionalBrownianmotion. Chapter2treatstheGaussiansolutionstostochasticheatandwaveequationsandin Chap. 3 we introduce some non-Gaussian self-similar processes which are known as Hermite processes. Chapter 4 contains some examples of multi-parameter self- similarprocessesandtheirbasicproperties. Part II is dedicated to the study of quadratic (and other) variations of several self-similar processes. The variations of a stochastic process play a crucial role in its probabilistic and statistical analysis. Best known is the quadratic variation of a semi-martingale,whichiscrucialforitsItôformula;quadraticvariationalsohasa directutilityinpractice,inestimatingunknownparameters,suchasvolatilityinfi- nancialmodels,intheso-called“historical”context.Forself-similarstochasticpro- cesses, the study of their variations constitutes a fundamental tool in constructing goodestimatorsoftheirself-similarityparameters.Theseprocessesarewellsuited tomodelingvariousphenomenawherescalingandlongmemoryareimportantfac- tors(internettraffic,hydrology,econometrics,amongothers,see[191]).Themost importantmodelingtaskisthentodetermineorestimatetheself-similarityparam- eter, because it is also typically responsible for the process’s long memory and its regularity properties. Studying such processes is thus an important research direc- tionbothintheoryandinpractice.Theapproachweuseisbasedontheso-called Malliavin calculus and multiple Wiener-Itô integrals. Part II comprises two chap- ters.Inthefirstwestudytheasymptoticbehaviorofvarioustypesofvariationsof fractionalBrownianmotion,oftheHermiteprocessandofthesolutiontothelinear heatequation.Inthesecondchapterwestudyothertypesofvariationsforstochas- ticprocesses,includingHermite-typevariationsforself-similarprocessesandfields andso-calledSpitzer’sandHsu-Robbinstyperesults. Eachchapterconcludeswithacollectionofexercises. Paris CiprianA.Tudor January2013 Contents PartI ExamplesofSelf-similarProcesses 1 FractionalBrownianMotionandRelatedProcesses . . . . . . . . . . 3 1.1 FractionalBrownianMotion . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 StochasticIntegralRepresentation . . . . . . . . . . . . . 5 1.1.3 TheCanonicalHilbertSpace . . . . . . . . . . . . . . . . 6 1.2 BifractionalBrownianMotion . . . . . . . . . . . . . . . . . . . . 8 1.2.1 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.2 QuadraticVariationswhen2HK=1 . . . . . . . . . . . . 10 1.2.3 TheExtendedBifractionalBrownianMotion . . . . . . . . 14 1.3 Sub-fractionalBrownianMotion . . . . . . . . . . . . . . . . . . 15 1.4 BibliographicalNotes . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 SolutionstotheLinearStochasticHeatandWaveEquation . . . . . 27 2.1 TheSolutiontotheStochasticHeatEquationwithSpace-Time WhiteNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.1 TheNoise . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.2 TheSolution . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 TheSpatialCovariance . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 TheSolutiontotheLinearHeatEquationwithWhite-Colored Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 TheNoise . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 TheSolution . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4 TheSolutiontotheFractional-WhiteHeatEquation . . . . . . . . 35 2.4.1 TheNoise . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2 TheSolution . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.3 OntheLawoftheSolution . . . . . . . . . . . . . . . . . 41 2.5 TheSolutiontotheHeatEquationwithFractional-ColoredNoise . 47 2.5.1 TheNoise . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ix x Contents 2.5.2 TheSolution . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.6 TheSolutiontotheWaveEquationwithWhiteNoiseinTime . . . 54 2.6.1 TheEquation. . . . . . . . . . . . . . . . . . . . . . . . . 54 2.6.2 TheSolution . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.7 TheStochasticWaveEquationwithLinearFractional-Colored Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.7.1 TheEquation. . . . . . . . . . . . . . . . . . . . . . . . . 58 2.7.2 TheSolution . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.8 BibliographicalNotes . . . . . . . . . . . . . . . . . . . . . . . . 73 2.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3 Non-GaussianSelf-similarProcesses . . . . . . . . . . . . . . . . . . 77 3.1 TheHermiteProcess . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.1.1 DefinitionandBasicProperties . . . . . . . . . . . . . . . 78 3.1.2 OtherRepresentations . . . . . . . . . . . . . . . . . . . . 81 3.1.3 WienerIntegralswithRespecttotheHermiteProcess . . . 82 3.2 AParticularCase:TheRosenblattProcess . . . . . . . . . . . . . 85 3.2.1 StochasticIntegralRepresentationonaFiniteInterval . . . 86 3.3 TheNon-symmetricRosenblattProcess . . . . . . . . . . . . . . . 92 3.4 BibliographicalNotes . . . . . . . . . . . . . . . . . . . . . . . . 99 3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4 MultiparameterGaussianProcesses . . . . . . . . . . . . . . . . . . 103 4.1 TheAnisotropicFractionalBrownianSheet. . . . . . . . . . . . . 103 4.1.1 BasicProperties . . . . . . . . . . . . . . . . . . . . . . . 104 4.1.2 StochasticIntegralRepresentation . . . . . . . . . . . . . 105 4.2 Two-ParameterHermiteProcesses . . . . . . . . . . . . . . . . . 107 4.3 MultiparameterHermiteProcesses . . . . . . . . . . . . . . . . . 110 4.4 BibliographicalNotes . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 PartII VariationsofSelf-similarProcesses:CentralandNon-Central LimitTheorems 5 First and Second Order Quadratic Variations. Wavelet-Type Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.1 QuadraticVariationsofFractionalBrownianMotion . . . . . . . . 122 5.1.1 EvaluationoftheL2-NormoftheQuadraticVariations . . 122 5.1.2 TheMalliavinCalculusandStein’sMethod . . . . . . . . 125 5.1.3 TheCentralLimitTheoremoftheQuadraticVariations forH ≤ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4 5.1.4 The Non-Central Limit of the Quadratic Variations forH > 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4 5.1.5 MultidimensionalConvergenceofthe2-Variations . . . . . 136 5.2 QuadraticVariationsoftheRosenblattProcess . . . . . . . . . . . 138 5.2.1 EvaluationoftheL2-Norm . . . . . . . . . . . . . . . . . 140

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.