ebook img

Analysis of the WN star WR 102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula PDF

1.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of the WN star WR 102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula

Astronomy&Astrophysicsmanuscriptno.wr102c_arxiv (cid:13)cESO2016 February15,2016 Analysis of the WN star WR102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula(cid:63) M.Steinke1,2,L.M. Oskinova1,W.-R.Hamann1,A.Sander1,A.Liermann3,andH.Todt1 1 InstituteofPhysicsandAstronomy,UniversityofPotsdam,14476Potsdam,Germany e-mail:[email protected], [email protected] 2 I.PhysikalischesInstitutderUniversitätzuKöln,ZülpicherStraße77,50937Köln,Germany 3 LeibnizInstituteforAstrophysicsPotsdam(AIP),AnderSternwarte16,14482Potsdam,Germany Received04November2015;accepted 6 1 ABSTRACT 0 2 Context.ThemassiveWolf-RayettypestarWR102cislocatedneartheQuintupletCluster,oneofthethreemassivestarclustersin b theGalacticCentreregion.PreviousstudiesindicatedthatWR102cmayhaveadustycircumstellarnebulaandisamongthemain e ionisingsourcesoftheSickleNebulaassociatedwiththeQuintupletCluster. F Aims.ThegoalsofourstudyaretoderivethestellarparametersofWR102cfromtheanalysisofitsspectrumandtoinvestigateits stellarandnebularenvironment. 2 Methods. We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar 1 spectra,andanalysedthembymeansofstellaratmospheremodels. Results.OurnewanalysissupersedestheresultspreviouslyreportedforWR102c.Wesignificantlydecreaseitsbolometricluminosity ] R and hydrogen content. We detect four early OB type stars close to WR102c. These stars have radial velocities similar to that of WR102c.WesuggestthattogetherwithWR102cthesestarsbelongtoadistinctstarclusterwithatotalmassof∼ 1000M .We S identifyanewWRnebulaaroundWR102cintheSINFONImapofthediffuseBrγemissionandintheHSTPaαimages.TheBr(cid:12)γline h. atdifferentlocationsisnotsignificantlybroadenedandsimilartothewidthofnebularemissionelsewhereintheHiiregionaround p WR102c. - Conclusions.ThemassivestarWR102clocatedintheGalacticCentreregionresidesinastarclustercontainingadditionalearly-type o stars.ThestellarparametersofWR102caretypicalforhydrogen-freeWN6stars.WeidentifyanebulasurroundingWR102cthat r hasamorphologysimilartoothernebulaearoundhydrogen-freeWRstars,andproposethattheformationofthisnebulaislinkedto t s interactionofthefaststellarwindwiththematterejectedatapreviousevolutionarystageofWR102c. a [ Keywords. stars:early-type–stars:individual:WR102c–stars:Wolf-Rayet–Galaxy:center–ISM:Hiiregions–infrared:stars 2 v 1. Introduction anobservational“smokinggun”inthesearchfornewWRstars 5 9 (Flageyetal.2011;Mauerhanetal.2011;Wachteretal.2010). TheadventofIRobservationsledtothediscoveryofmanymas- 3 Barniskeetal.(2008)haveperformedananalysisofthenear- 3sive stars in the central part of our Galaxy, mainly congregated IR K-band spectrum of the Peony star by means of the non- 0inthreemassivestarclusters,butalsoscatteredinthefield(e.g. LTEstellaratmospherecodePoWR(e.g.Hamann&Koesterke .Figeretal.1999b;Homeieretal.2003).Therelativelyisolated 1 1998b;Gräfeneretal.2002).Ithasbeenshownthatthisobjectis massivestarsintheGalacticCentre(GC)regionhavenotbeen 0 amongthemostluminous,andinitiallymostmassivestarsinthe extensively observed and are as yet poorly understood (among 6 Galaxy.However,atthetimeoftheirpapergoodqualityspectra 1recentresults,seee.g.Dongetal.2015;Habibietal.2014;Os- of WR102c were not available and only crude qualitative con- v:kinovaetal.2013). clusionscouldbemadeaboutthissource. TostudytwosuchrelativelyisolatedWolf-Rayet(WR)stars, i To remedy this situation and to study the Peony star and XWR102candWR102ka(knownasthePeonystar),weobtained WR102c in more detail, we obtained integral field spectra of rmid-IRspectrausingtheIRSspectrographonboardtheSpitzer these stars and their nebulae with the Spectrograph for Integral a telescope(Houcketal.2004).Theseobservationsleadtothede- FieldSpectroscopyintheNearInfrared(SINFONI).Inthepre- tectionofdustycircumstellarnebulaearoundtheseobjects(Bar- viouspaper(Oskinovaetal.2013,herafterPaperI)weanalysed niske et al. 2008). This was an unexpected discovery, since it the Peony star WR102ka and its surrounding. In this paper we was previously believed that dust cannot survive in the imme- concentrateontheanalysisofWR102c. diate vicinity of hot stars of spectral type WN. However, since WR102c is located in the neighbourhood of the Quintuplet then,dustyIRnebulaehavebeendiscoveredaroundmoreWN- Cluster,inalargeHiiregionseenintheIRimagesasextended type stars (Gvaramadze et al. 2009, 2014; Burgemeister et al. diffuse emission and called the Sickle Nebula (see Fig.1). The 2013).Evenmoreimportantly,suchdustynebulaehavebecome starwasdiscoveredduringasurveybyFigeretal.(1999b),who classified it as WN6 subtype. The goal of our present analy- (cid:63) Thescientificresultsreportedinthisarticlearebasedonobserva- sis is to obtain the parameters of WR102c by means of spec- tionsobtainedduringtheESOVLTprogram383.D-0323(A) tral modelling, and to unravel its evolutionary history and pos- Articlenumber,page1of10 A&Aproofs:manuscriptno.wr102c_arxiv Fig.1. HST imageoftheQuintupletClusterandtheSickleNebula.Imagesizeis4.(cid:48)4×2.(cid:48)9.ThehorizontalaxisisparalleltoGalacticlongitude. ThenetPaschen-αimageisinred(seedetailsinDongetal.2011),theNICMOSNIC3F190Nimageingreen,andtheNICMOSNIC3F187N imageinblue(continuumandlinefilterforPaα).ThewhiteboxaroundWR102cmarksthefieldofourSINFONImosaic.Thisfieldis≈1(cid:48)from thecentreoftheQuintupletCluster,whichisseenasagroupofbrightbluestarsjustbelowtheimagecentreclosetothePistolNebula(identified byitscharacteristicshape).TheimageisbasedonthedataobtainedinthePaschen-αsurveyoftheGalacticCentre(Wangetal.2010). sible ties with the Quintuplet Cluster. We study the environ- The observations were performed with the integral field spec- ment of WR102c by means of integral field spectroscopy to trographSINFONI(Eisenhaueretal.2003;Bonnetetal.2004) searchforothermassivestarsthat,togetherwithWR102c,may yieldingathree-dimensionaldatacubewithtwospatialdimen- formamassivedistinctsubcluster.Wealsostudythepartofthe sionsandonespectraldimension.TheK-band(1.95−2.45µm) Sickle Nebula that is directly influenced by ionising radiation grating with resolving power R ≈ 4000 was used. The spatial fromWR102c.Throughoutthepaperweadoptdistancemodu- scale was chosen as 0(cid:48).(cid:48)25 per pixel. The total observation con- lusDM =14.5mag(Reid1993). sistsofamosaicofsevenpointings(observationalblocks),cov- Special interest in WR102c is also motivated by the recent ering≈ 24(cid:48)(cid:48)×23(cid:48)(cid:48) (≈ 0.9pc×0.9pc)centredonWR102c(see report by Lau et al. (2015) who have identified a dusty helix Fig.2). shape filament in the vicinity of the Quintuplet Cluster. Lau Theadaptiveopticsfacilitycouldnotbeusedsincethereis etal.proposethatthisdustyfilamentisaprecessing,collimated no sufficiently bright reference star in the neighbourhood. The outflowfromWR102c.Furthermore,ithasbeensuggestedthat logoftheobservationsisgiveninTable1.ABBA(sciencefield WR102chasagravitationallyboundcompactbinarycompanion –sky–sky–sciencefield)cycleswereperformedateachpoint- with an orbital period > 800days. This hypothesis potentially ing.Eachfieldwasobservedwithatotalexposuretimeof300s, makesWR102caveryrareandinterestingobjectthatdeserves usuallyasthesumoftwodetectorintegrationsof150seach,ex- athoroughstudy. ceptforthefields361404and361410wherewehadtosplitthe TheSINFONIobservationsanddatareductionarepresented integrationsinto30sintervalstoavoidsaturationofthebright- in Sect.2. The circumstellar nebula around WR102c is dis- estobjects.Toobtainfluxcalibratedspectra,standardstarswere cussedinSect.3.ThespectralanalysisofWR102cisdescribed observedatsimilarairmassandinthesamemodeasthescience in Sect.4. The objects detected near WR102c, in particular a targets.Theseeingwasbetween0(cid:48).(cid:48)6and1(cid:48).(cid:48)1,limitingtheangu- subclusterofearly-typestars,arediscussedinSect.5,whilethe larresolutionofourobservations. summaryandtheconclusionsaredrawninSect.6. The data reduction was performed with the SINFONI pipeline version 2.32 (EsoRex version 3.9.6) using additional cosmicremovalfromL.A.cosmic(vanDokkum2001)andself- 2. Observationsanddatareduction writtentoolsinInteractiveDataLanguage(IDL).Theprocedure The data used in this work were obtained with the ESO VLT was the same as performed for the Peony star and we refer to UT4 (Yepun) telescope between April 29 and May 19, 2009. section2ofPaperIfordetails. Articlenumber,page2of10 M.Steinkeetal.:AnalysisofWR102canditsclusterintheSickleNebula Table1.Logofobservations. Block Date R.A.(J2000) Dec.(J2000) sky1 Telluric Average (ID) 2009 17h46m -28◦49(cid:48) standard seeing[(cid:48)(cid:48)] 361398 April29 11s.10 -0(cid:48).(cid:48)9 B1 HIP83861 1.05 361400 April29 10s.56 -0(cid:48).(cid:48)9 B2 HIP83861 0.98 361402 April29 11s.47 06(cid:48).(cid:48)3 B1 HIP83861 1.01 361404 May17 10s.93 06(cid:48).(cid:48)9 B2 HIP88857 0.64 361406 May17 10s.37 06(cid:48).(cid:48)3 B1 HIP85138 0.75 361408 May19 11s.51 14(cid:48).(cid:48)0 B2 HIP86951 0.57 361410 May19 10s.97 14(cid:48).(cid:48)0 B1 HIP84435 0.65 Notes.(1)skyfieldsB1andB2arecentredat17h46m18s.53,−28◦48(cid:48)5(cid:48).(cid:48)7and17h46m15s.46,−28◦48(cid:48)54(cid:48).(cid:48)2,respectively. 25 24 23 22 21 20 19 18 16 17 13 14 15 12 15 11 10 9 6 8 7 5 3 4 N N 2 E E WR nebula 1 2" 2" Fig.2. Imageofthecollapsedgrandcube(seetextfordetails).Thede- Fig.3. NegativeimageatthewavelengthoftheBrγ-line.Themaximum tectedsources(opencircles)arelabelledwiththeirsequentialnumbers emission (darker areas in the false-colour image) is ≈ 2mJy/arcsec2 (seeTable2).Theimagesizeis23(cid:48).(cid:48)6×23(cid:48).(cid:48)1(0.92×0.90pc).Northis while the lowest emission (lighter areas) is ≈ 0.3mJy/arcsec2. The upandeastistotheleft. bluearrowspointoutthepositionofthecircumstellarWR102c-nebula. Source15(WR102c)isindicatedinthecentreofthenebulaasarethe positions(smallcrosses)ofourextractedspectra(cf.Fig.4). Theflux-calibratedthree-dimensionaldatacubesoftheindi- vidualfieldswerecombinedtoagrandmosaiccube.Thiscube was “collapsed”, i.e. summed over all wavelengths, to obtain 3. CircumstellarnebulaaroundWR102c a pass-band image for the purpose of point source detection. Our observations are sensitive down to an apparent magnitude Fromtheanalysisofmid-IRobservationsofWR102cwiththe of K = 14.8mag. With the reddening towards WR102c (see Spitzer and MSX telescopes, Barniske et al. (2008) detected a s Sect.4), the extinction in the K-band amounts to about 3mag. dustycircumstellarnebulaheatedbytheintenseradiationofthe Thus, at the distance of 8kpc, our observations are sensitive to WR star. However, the spatial resolution of these instruments absoluteK-bandmagnitudes<−2.8mag. wasnotsufficienttodirectlyimagethisnebula.Ournear-IRSIN- We securely detect 25 stellar point sources in the observed FONI data have a much better resolution. Hence, to study the field (see Fig.2). Their coordinates, spectral types, and radial nebular emission we created a narrow band image in the Brγ velocities are given in Table2. The K -band magnitudes were line.AbipolarorringstructurecentredonWR102c(source15) s calculatedfromtheflux-calibratedspectra,usingthe2MASSfil- isclearlyseeninthisimage(seeFig.3).Theradiusoftheneb- tertransmissionfunction(Skrutskieetal.2006).Theradialve- ula is ≈ 4(cid:48)(cid:48) (0.15pc). As the field is quite crowded with stars, locities were derived from the Doppler shift of prominent lines itisdifficulttoconcludewhetherthenebulaiscircularorbipo- (except for WR102c, which has a wind-dominated spectrum), lar.Tomeasureitsexpansionvelocity,thespectrawereextracted namely the first 12CO band heads for cool stars and hydrogen at different locations. As can be seen in Fig.4, the nebular Brγ Brγ and helium lines for the OB-type stars. Further details are linesareneithershiftednorbroadenedbymorethan≈80kms−1 giveninSects.4and5. (SINFONI’sspectralresolution).Thisupperlimitontheexpan- Articlenumber,page3of10 A&Aproofs:manuscriptno.wr102c_arxiv Table 2. Catalogue of stellar sources detected in the observed field (within≈0.9pc)aroundWR102c No. R.A. Dec. K MK (cid:51) s rad 17h46m −28◦49(cid:48) [mag] type [kms−1] 1 11s.65 17(cid:48).(cid:48)8 12.8 M0 -70 South west 2 11s.38 14(cid:48).(cid:48)9 13.0 M1 95 3 11s.29 13(cid:48).(cid:48)2 14.4 K1 -90 4 11s.20 13(cid:48).(cid:48)1 14.4 K4 85 5 10s.94 10(cid:48).(cid:48)8 13.4 M0 55 6 11s.34 10(cid:48).(cid:48)3 13.0 M0 50 7 10s.29 10(cid:48).(cid:48)3 14.3 K5 10 8 11s.07 10(cid:48).(cid:48)1 14.0 K4 205 set North 9 10s.58 09(cid:48).(cid:48)7 13.4 M0 60 ff o 10 10s.88 08(cid:48).(cid:48)7 10.3 M5-6 -45 + 11 11s.69 08(cid:48).(cid:48)3 13.3 K5 140 x 12 10s.55 07(cid:48).(cid:48)9 12.4 M1 100 u l 13 11s.67 07(cid:48).(cid:48)7 12.0 B1-2 100 f 14 11s.26 07(cid:48).(cid:48)7 14.1 B5 90 ve 15 11s.08 07(cid:48).(cid:48)5 11.6 WN6 120 ti a 16 11s.53 05(cid:48).(cid:48)8 12.0 K0 120 l e 17 11s.00 05(cid:48).(cid:48)3 12.6 B2: 70 R West 18 10s.93 05(cid:48).(cid:48)2 14.3 K3 270 19 11s.13 04(cid:48).(cid:48)8 13.8 K5 90 20 10s.84 04(cid:48).(cid:48)5 14.8 K5 -250 21 10s.91 03(cid:48).(cid:48)2 14.7 M0 185 22 11s.28 02(cid:48).(cid:48)9 14.0 M0 0 23 10s.64 00(cid:48).(cid:48)6 13.8 K4 -65 East 24 10s.54 -1(cid:48).(cid:48)0 14.0 K2 -35 25 10s.85 -2(cid:48).(cid:48)6 12.8 O7? 100 sionvelocityindicatesthatthenebulaisnotexpandingquickly, oppositetowhatwouldbeexpectediftheobservedbipolarstruc- tureweretheresultofafastcollimatedoutflow. -800 -400 0 400 800 Nebulae with various morphologies are often observed v in km/s around WR stars. The mechanisms of nebula formation are rad linkedtostellarevolution:whenamassivestarleavesthemain Fig. 4. Observed Brγ line in the spectrum of the WR102c-nebula at sequence,itlosesalargeamountofmatter.Intheluminousblue differentstar-freelocations.Thespectra(aslabeled)weretakenatthe variable(LBV)oraredsupergiant(RSG)phasethestellarwind following distance and direction from WR102c east at 4(cid:48)(cid:48) (0.15pc), isdenseandslow,whileatalaterevolutionarystages(WN)the westat3(cid:48)(cid:48) (0.11pc),northat10(cid:48)(cid:48) (0.38pc)south-westat6(cid:48)(cid:48) (0.23pc), wind is fast. The interaction between the slow and fast moving cf.Fig.3forthepositions. windcreatesshellsthatareionisedandheatedbythestellarradi- ation(e.g.Garcia-Segura&MacLow1995;Freyeretal.2006; van Marle et al. 2007; Toalá & Arthur 2011). A recent review can,perhaps,beattributedtotheverydenseandwarmenviron- on WR nebulae is given in Toalá et al. (2015) and references ment in the vicinity of the Quintuplet Cluster. Another unusual therein. aspect is the presence of a helix-like tail likely associated with To explain the nature of the nebula around WR102c seen WR102casfoundbyLauetal.(2015). in the Brγ image we considered the following check-list. The TheWR102c-nebulaandhelixtailcanalsobeclearlyrecog- nebula is surrounding a WR-type star. It has a small expansion nised in the HST Paα image (Fig.5). Moreover, it appears that velocitysimilartootherWRnebulae(e.g.Marstonetal.1999). another helix-like outflow is seen within the ring-nebula, as in- The nebula is clearly seen from its hydrogen emission (in this dicatedinFig.5.However,thePaαimagesshouldbeinterpreted casePaαandBrγ)andinHeimapsofdiffusegas,analogously with caution. These were heavily processed, as explained in tootherWRnebulae.Significantly,WRnebulaehavemorpholo- depthinDongetal.(2011).TheSINFONIimagesdonotshow gies that correlate with the spectral type of their central stars. obvioushelix-likestructuresassociatedwithWR102c. Theringorbubble-likemorphologies(B-type),sometimesbipo- Vink et al. (2011) have found a significant correlation be- lar, are found around WNE stars with fast winds, just as in the tween fast rotating WR stars and the subset of WR stars with caseofWR102c.Thesecharacteristicsleadustoconcludethat ejecta nebulae. They note that these objects have only recently thenebulaaroundWR102cisatypicalWRnebula. transitioned from a previous RSG or LBV phase and thus have However, there are some important aspects that distinguish notyetsignificantlyundergonespin-downwhichwillbecaused the WR102cnebula. It is small, only0.15pc, while the typical bytheirintensivemasslossduetotheconservationofmomen- sizeofWRnebulaeisafewparsec.Thesmallsizeofthisnebula tum.ThissubsetoffastrotatingWRstarsarethecandidateγ-ray Articlenumber,page4of10 M.Steinkeetal.:AnalysisofWR102canditsclusterintheSickleNebula WR-nebula Helix-shape outflow (?) Fig. 5. HST Paschen-α image (Dong et al. 2011)oftheringnebulaaroundWR102c.The legends and the arrows indicate (i) the helix- like nebulosity detected by Lau et al. (2015); (ii) the ring WR nebula as seen in the SIN- FONIBrγimageinFig.3;(iii)asmallstructure thatresemblesahelix-likeoutflow.Thedashed rectanglecorrespondstoourSINFONImosaic WR102c outflow? field. The orientation is the same as in Figs.2 and3,i.e.northisupandeastistotheleft.The image is a zoom into the Paschen-α survey of theGalacticCentre(Wangetal.2010). burstprogenitors.Gräfeneretal.(2012)haveidentifiedaninci- ringtotheradiusR .Forthewindvelocityweadopttheusualβ- ∗ dencerateof∼ 23%forWRstarsintheGalaxythathavepos- lawwithβ=1(e.g.Sanderetal.2015).Eachstellaratmosphere sibleejectanebulaeandrotatefasterthantheaverageWRstars. modelisdefinedbyitseffectivetemperature,surfacegravity,lu- Theynotethatevenearly-typehydrogen-freeWRstars,suchas minosity, mass-loss rate, wind velocity, and chemical composi- WR6 (WN4) and WR136 (WN6) can be fast rotators, perhaps tion. The gravity determines the density structure of the stellar evolvingthroughbinarychannels.Hence,thepresenceofacom- atmospherebelowandclosetothesonicpoint.Iflinesfromthe pactbipolarnebulaandahelix-likeoutflowfromWR102cmay quasi-hydrostaticlayersarevisibleinthespectrum,theanalysis indicatethatthisobjecthasonlyrecentlytransitionedtotheWR allowsthegravityandthusthestellarmasstobederivedfromthe evolutionarystage,andisstillarelativelyfastrotator. pressure-broadenedabsorptionlineprofiles(Sanderetal.2015). ForagivenchemicalcompositionandstellartemperatureT , ∗ syntheticspectrafromWRmodelatmospheresofdifferentmass- 4. TheWN6starWR102c lossrates,stellarradii,andterminalwindvelocitiesyieldalmost the same emission-line equivalent widths if their transformed WR102cwasdiscussedinBarniskeetal.(2008)whoconfirmed its spectral type as WN6 based on the inspection of the low- radii Rt ∝ R∗(cid:104)(cid:51)∞D−1/2M˙−1(cid:105)2/3 (Schmutz et al. 1989) agree. resolutionspectrumshownbyFigeretal.(1999b).Inthepresent To account for small-scale wind inhomogeneities, we adopt a paper,wenowanalysethenewhigh-qualitySINFONIspectrum clumping contrast of D = 4 as a typical value for WN stars ofWR102cindetaillargelyrevisingtheestimatesmadeinBar- (Hamann&Koesterke1998a).WenotethatR isinverselycor- t niskeetal.(2008). related with the mass-loss rate, i.e. the smaller the transformed The WR102c spectrum (Fig.6) was analysed by means of radius,thehigherthedensityinthestellarwind. PoWR model atmospheres1 (Hamann & Gräfener 2004; Todt etal.2015).ThePoWRcodehasbeenusedextensivelytoanal- ysethespectraofmassivestarsintheIRaswellintheultravio- 4.1. TemperatureofWR102c letandopticalrange(e.g.Oskinovaetal.2007;Liermannetal. Figure6showsthenormalisedspectrumofWR102ccompared 2010; Oskinova et al. 2011; Sander et al. 2012; Hainich et al. to synthetic spectra. Unfortunately, it is impossible to find a 2014). The PoWR code solves the non-LTE radiative transfer model that simultaneously fits all Hei and Heii emission lines. in a spherically expanding atmosphere simultaneously with the The model for T = 75kK reproduces the Heii emission lines statistical equilibrium equations and accounts at the same time ∗ perfectly,buttheHeilinesat2.06µmand2.11µmareseverely for energy conservation. Complex model atoms with hundreds underestimated(reddottedlineinFig.6).Thealternativemodel of levels and thousands of transitions are taken into account. drawn as a green dashed line for a temperature of T = 66kK The computations for the present paper include detailed model ∗ reproducestheHeilineat2.06µmperfectly,butunderestimates atomsforhydrogen,helium,carbon,oxygen,nitrogen,andsili- someoftheHeiilines.Thelineat2.11µmisactuallynotonly con.Ironandiron-groupelementswithmillionsoflinesarein- composedofHei,butisalsoblendedwithNiii.Thecorrespond- cludedthroughtheconceptofsuper-levels(Gräfeneretal.2002). ing transitions are not fully included in our atomic data, which Theextensiveinclusionoftheirongroupelementsisimportant becauseoftheirblanketingeffectontheatmosphericstructure. mightexplainthemismatch. Hence,thestellartemperatureremainsuncertainintherange The stellar radius R , which is the inner boundary of our ∗ T = 66kK to 75kK. Moreover, if the star is a fast rotator it model atmosphere, corresponds by definition to a Rosseland ∗ could lead to variations of the wind properties between poles continuumopticaldepthof20.ThestellartemperatureT isde- ∗ andequator. finedbytheluminosityandthestellarradiusR viatheStefan- ∗ Boltzmann law; i.e. T denotes the effective temperature refer- It is not possible to establish the rotation rates of WR stars ∗ fromspectroscopicanalysisofthenear-infraredonly.Forexam- 1 http://www.astro.physik.uni-potsdam.de/PoWR/ ple,ourtestcalculationsshowthateventheunrealisticallyhigh Articlenumber,page5of10 A&Aproofs:manuscriptno.wr102c_arxiv 1.6 WR 102c 1.4 1.2 x u l F1.0 d e z i al0.8 m Nor000...246 HeII 15-8 1o1PS - 2sHeI 2p o22D - 3pPCIV 3d HeII 26-9NV 11 - 10o33S - 3pPHeI 4so11S - 3pPHeI 4sNIII 8-7 HeI 7 - 4HeII 14-8(Br)γHeII 10-7 HeII 22-9 22P - 5sSNIII 5pHeII 21-9NV 5p - 5s HeII 20-9 o22D - 9pPIV 10dHeII 13-8 HeII 19-9 C 2.0 2.1 2.2 2.3 2.4 λ / µm Fig.6. NormalisedK-bandspectrumofWR102c(solidblue),comparedtotwoPoWRmodels:T = 75.0kK,logL/L = 5.57,logM˙ = −4.17 ∗ (cid:12) (reddottedline);T =66.0kK,logL/L =5.51,logM˙ =−4.08(greendashedline).Theprominentspectralfeaturesareidentified. ∗ (cid:12) photosphericrotationvelocitiesupto(cid:51) sini = 1000kms−1 > otherwise carbon emission lines would be visible (e.g. Civ at rot (cid:51) wouldnotleaveanynoticeableimprintontheK-bandspec- λ = 2.07−2.08µm). Hence, we set the carbon abundance to a crit trum as long as the wind does not corotate (see discussion in massfractionof10−4. Shenar et al. 2014). We do not observe signs of such extreme windcorotationinWR102c. 4.3. BolometricluminosityofWR102c Fortunately,theimpactoftheT uncertaintyontheimplied ∗ mass-loss rate and luminosity is relatively small (see Table 3). Inparticular,theeffectonT ,i.e.theeffectivetemperaturere- Table3.StellarparametersofWR102c 2/3 ferring to the radius of Rosseland optical depth τ = 2/3, is Ross hardly affected. This invariance reflects the parameter degener- Spectraltype WN6 acyofverydensestellarwindsasdiscussedine.g.Hamannetal. logL/L 5.5...5.7 (cid:12) (2006). T [kK] 66...75 ∗ Anotherspeculativeexplanationfortheinconsistentspectral T [kK] 33...37 2/3 fit could be the presence of a cooler, unresolved companion. A logM˙ [M yr−1] −4.17...−4.09 (cid:12) useful empirical diagnostic of WR-binaries is provided by X- log Φ [s−1] 49.0...49.3 Ly ray observations. While single WR stars are relatively faint X- (cid:51) [kms−1] 1600 ∞ raysources(Ignaceetal.2000;Oskinovaetal.2003),theWR- M /M ∼40 ini (cid:12) typebinariesusuallydisplaycollidingwindphenomenaandare (cid:51) [kms−1] 120±40 bright,detectableX-raysourcesevenintheGCregion(Law& rad A [mag] 2.8 Yusef-Zadeh2004;Oskinova2005).WR102cwasnotdetected K in deep X-ray surveys of the Quintuplet Cluster (Wang et al. 2006).Thisnon-detectionprovidesevidenceagainstthebinarity Intheirdiscoverypaper,Figeretal.(1999b)assignedaK - hypothesis. s band magnitude of 11.6mag to WR102c. This value was re- vised by Barniske et al. (2008) who erroneously used the K - s 4.2. Abundances bandmagnitudeofanearbybrightstar(source10inFig.2)from the 2MASS and the Spitzer IRAC point source catalogues and Barniske et al. (2008) constrained the hydrogen abundance in adopted K = 9.3mag for WR102c. This resulted in an over- s WR102c as being below 20% by mass. The new data allow estimatedstellarbolometricluminosity.ThenewSINFONIdata this limit to be adjusted to < 5%. If the hydrogen content allowustounambiguouslyidentifyWR102cinthenear-IRim- werehigher,itwouldcontributesignificantlytotheemissionat age (source 15 in Fig.2) with K =11.6mag, in agreement with s λ=2.16µm(Heii+Brγ).Thus,ournewanalysisconfirmsthat theoriginalreport. WR102cisavirtuallyhydrogen-freeWNEstar. Toputstrongconstraintsonthestellarluminosity,wecom- In the observed spectrum, all clearly detectable metal lines pared the model stellar spectral energy distribution (SED) with (ofnitrogenandcarbon)areblendedwithheliumlines(e.g.Nv the available photometric and spectrophotometric data. The re- at λ2.1µm or Civ at λ2.08µm). For our models we adopted a sult is shown in Fig.7. We used the available photometry of massfractionof1.5%fornitrogen,whichistypicalforGalac- WR102cfromSpitzerIRAC(Churchwelletal.2009),UKIDSS tic WN stars. The carbon abundance is constrained to (cid:28) 1%, (Lucas et al. 2008), and HST NICMOS (Dong et al. 2011). Articlenumber,page6of10 M.Steinkeetal.:AnalysisofWR102canditsclusterintheSickleNebula The SED fitting then allows the luminosity and the interstel- confirmed binaries (Tuthill et al. 2006). The importance of bi- lar extinction to be adjusted by adopting the distance modulus nary channels in the evolution of massive stars is well recog- of DM = 14.5mag. The observed photometry of WR102c is nised(e.g.Vanbeverenetal.2007).Schneideretal.(2014)used nicely reproduced by a model with a bolometric luminosity of their binary evolution code to model the observed present-day logL/L ≈ 5.6andtheextinctionE = 8.0mag,correspond- massfunctionsoftheQuintupletClusterandestimateditsageas (cid:12) B−V ing to A ≈ 2.8mag. The alternative, slightly cooler model 4.8±1.1Myrifbinarychannelsareincluded.Hence,withinthe K (T = 66kK) leads to logL/L ≈ 5.5 and the same extinction. uncertaintiestheageofWR102ciscomparabletotheageofthe ∗ (cid:12) ThisA isconsistentwithWR102cbeinglocatedintheGCre- QuintupletCluster K gion(e.g.Schultheisetal.1999;Figeretal.1999a). WR102cislocated≈2.5pc(≈1(cid:48))fromthecoreoftheQuin- WR102c is highly reddened and, if present, anomalous ex- tuplet Cluster. It is quite common for a massive star in the GC tinction may lead to an uncertainty in the estimates of stellar to reside outside of the three known large clusters (e.g. Cotera luminosity.Toinvestigatethisproblemwedidathoroughcheck etal.1999;Mauerhanetal.2010;Dongetal.2011).Thereare of the various reddening laws using R and E provided by different scenarios that can explain the origin of these isolated V B−V the extinction functions of Moneti et al. (2001), Cardelli et al. massive stars, for example they might have been born in rela- (1989),andFitzpatrick&Massa(2009).Wefoundthatthespec- tiveisolation,orejectedortidallystrippedfromoneofthethree tral energy distribution is best reproduced by an extinction of known clusters, or they might belong to clusters that have not E(B−V) = 8.0±0.3mag using the Moneti et al. (2001) and beendiscoveredyet. Cardellietal.(1989)functions,whileE(B−V)=8.7±0.4mag It has recently been suggested by Lau et al. (2015) that the fitsbestfortheFitzpatrick&Massa(2009)function,resultingin evolutionofWR102cmayhavebeenaffectedbybinaryinterac- theuncertaintyintheluminositylogL/L =5.5...5.7. tions, and the star could have been ejected from the Quintuplet (cid:12) As a next step, we varied the R from the commonly used Cluster.However,basedonouranalysisthemeasuredradialve- V valueR =3.1by+0.5and+1.0foreachofthethreeextinction locity of WR102c is not outstanding and compares well with laws. TVhe curves were then scaled in luminosity to match the theaverageradialvelocityoftheQuintupletstars(≈110kms−1, K-band photometry. However, in all cases the reddening using Liermannetal.2012).Propermotionobservationsarerequired the standard value R = 3.1 provides the best description of toestablishtherunawaystatusofWR102c.Ontheotherhand, V thestellarSEDandmatchesthephotometrymarksbetter.Thus, Habibi et al. (2014) used their N-body simulations and showed we conclude that there are no reasons to suspect an anomalous thatupto80%oftheisolatedobservedWRstarsintheGCre- reddeningforWR102c. gioncouldbeexplainedbytidalstriping.Inparticular,theyesti- Our models predict that WR102c produces log(Φ ) = matetheageoftheQuintupletClusterto5Myrandshowthatthe Ly projectedtidalarmsofthisclustermayextendoutto60pcinthe 49.0...49.3 [s−1] hydrogen ionising photons. This compares directionoftheSagittariusB2region.GiventheageofWR102c well with the value of 49.45 derived from radio observations anditsproximitytotheQuintupletCluster,tidalstrippingisable of the Sickle Nebula by Lang et al. (1997). Thus, although our toexplainthelocationofWR102c. revised number of ionising photons is lower than the value of There is, however, another possible evolutionary path for Barniskeetal.(2008),WR102ccanstillbeconsideredthemain WR102c.OurSINFONIdatarevealedfourOB-typestarswithin ionisingsourceoftheSicklenebula.However,thePaα-imageof a projected distance of 1 pc around WR102c (see Sect.5). theGCregion(Fig.1)doesnotshowafullyionisedholearound Hence, it is possible that WR102c was formed together with a WR102c,incontrasttotheregionaroundtheQuintupletCluster. its own cluster, independently from the Quintuplet Cluster (see ThiscouldmeanthatourWRstarislocatedintheforegroundof Sect.5.3). theSicklenebula. 5. StarsinthevicinityofWR102c 4.4. EvolutionarystatusofWR102c 5.1. Early-typestars Thederivedstellarluminosityandtemperatureallowustoeval- uate the evolutionary status of WR102c. In Figure8 the posi- Amongthe25stellarsourcesdetectedinourSINFONIobserva- tionofWR102cintheHRdiagramiscomparedwithevolution- tions, we found four early-type stars (see Table2). All of these ary tracks from Ekström et al. (2012) for rotating stars of solar objectshavecounterpartsintheUKIDSSGalacticPlaneSurvey metallicity. WR102c is nicely located at the position of WNE (Lucasetal.2008);thecross-identificationsareprovidedinTa- stars on a track with an initial mass of 40M(cid:12). In the case of a ble4. rotatingmodel,theageofWR102cis<∼ 6Myr,whileassuming The K-band spectra of these early-type stars are shown in evolutionwithoutrotationwouldyield<∼ 4Myr.Bothestimates Fig.9.Theradialvelocitiesmeasuredforeachstarareconsistent assumesinglestarevolution.Withitsestimatedageof4−6Myr, with WR102c within the uncertainties. The extinction to each WR102cwouldhavecompletedatleastoneorbitaroundtheGC early-typestarwasestimatedfromSEDfitting,andwasfoundto (Stolteetal.2014). besimilartotheextinctiontowardsWR102c.Thus,weconclude Assuming single star evolution and taking into account the thattheearly-typestarsintheWR102cfieldarelikelyspatially ratios between numbers of stars with different spectral types, relatedandmightevenbegravitationallybound. Liermann et al. (2012, 2014) constrained the age of the Quin- Forthespectralclassification,weusethenear-IRspectralat- tupletClusterto3±0.5Myr.ItwasnoticedthatallWNstarsin lasofOBstars(Hansonetal.1996,2005).Source25iseithera theQuintuplethavelatespectraltypes(WN9h)andallWCstars lateO-orearlyB-type(super)giant.Theotherthreeobjectsare have WC8-9 spectral types (Liermann et al. 2009). The evolu- B-typestars.TheyhardlyshowanyfeaturesintheK-bandexcept tionarychannelsthatleadtotheproductionoflateWCstarsare forhydrogenBrγandoneortwoHeilines(atλλ2.06,2.11µm). not yet understood (see extensive discussion on this subject in Moreover, Brγ is contaminated by nebula emission. To over- Sanderetal.2012).TheWCstarsintheQuintupletareseverely come this contamination, we subtracted the background emis- enshroudedbydust(Monetietal.2001),andsomeofthemare sionfromthestellarspectra.Therefore,itisdifficulttodetermine Articlenumber,page7of10 A&Aproofs:manuscriptno.wr102c_arxiv -14.0 -14.8 o-1-2 A]m-15.2 o-1]A--1144..84 HST NICMFO1S87N11.3 -1 cflog [erg sλ--1165..06 FWigR.1072.c.TShepercetdrdaelneednesrpgeyctrudmistorifbtuhteioPnoWfoRr -2m F190N 111111...666 4.1 4.3 log 4λ. 5/ Ao 4.7 4.9 model with T∗ = 75kK is shown as a red c 111222...333 solidline(seeTable3forthedetailedparame- -1s-15.2 ters)andcomparedtotheavailablephotometry, [erg 111333...444 999...333777 888...777000 w(HhSicThNisIiCnMdicOaStedPabαybfilluteer(sUaKnIdDSSpSi)tzaenrdIbRlaAcCk fλ Channels 2 and 3) boxes. The inset in the up- g -15.6 perrightcornershowsthecontinuumphotome- o l trymarkscomparedtothecontinuumSEDfor the two alternative models used in Fig.6 with 111666...111 -16.0 T = 66kK (green dashed curve) and 75kK ∗ (redsolidcurve),respectively.TheoverallSED J H K C D s fitishardlyaffectedbythetemperatureuncer- UKIDSS Spitzer IRAC -16.4 tainty. We note that in the mid-IR the stellar SEDisbelowthephotometricobservation,at- 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 tributedtotheemissionfromawarmdustyneb- log λ / Ao ula(Barniskeetal.2008). T /kK 6.0 200 150 100 60 *40 20 10 HeI HeI HeI HI (Br)γ #25 pre-WR WNL WNE WC 2.5 et s f of #17 40M + 2.0 x WR102c u 5.6 m. fl #14 r1.5 o n #25 27M #13 1.0 ) L 2.1 2.2 2.3 /L5.2 λ / µm ( g lo #13 Fig.9. SINFONIspectraofearly-typestarsintheWR102cfield.The 18M numberaboveeachspectrumcorrespondstothesourceidentificationin Fig.2andTable2. #17 4.8 15M We have determined the stellar parameters of the OB-type starsintheWR102cclusterwithtentativefitsoftheSEDandthe 13M #14 linespectratoPoWRmodels.TheresultsarecompiledinTable He-ZAMS ZAMS 5.Theirinitialmasseswereestimatedfromthecomparisonwith 4.4 evolutionarytracksinthetheHRdiagram(seeFig.8). 5.5 5.0 4.5 4.0 log (T /K) * Table4.Cross-correlationsinWR102cclusterwiththeUKIDSScata- Fig.8. HRdiagramwithevolutionarytracksofEkströmetal.(2012) logue.SourcenumbersrefertoTable2 forrotatingstarsofsolarmetallicity.Thedifferentcoloursidentifythe differentstagesofthestellarevolution:thinblack:pre-WRphase;thick yellow: WNL phase (i.e. with hydrogen between 40−5% mass frac- SourceNo. IDfromUKIDSScatalogue tion);thickgreen:WNEphase(hydrogenlessthan5%massfraction); #13 J174611.81-284906.5 thickblue:WCphase(i.e.carbonmorethan20%massfraction).The #14 J174611.34-284906.9 positionsofWR102c(bluediamond)andtheOB-typestars(lightblue #17 J174611.03-284903.9 squares)areindicatedaswell. #25 J174610.87-284856.6 theirspectralsubtypes.Nevertheless,fromthewingsofBrγtheir luminosityclassescouldbeconstrained. Articlenumber,page8of10 M.Steinkeetal.:AnalysisofWR102canditsclusterintheSickleNebula Table5.StellarparametersoftheOBstarsinthesample early-type stars in this region (∼ 100kms−1). The position of star10intheHRDwouldplaceitonatrackforaninitialmass SourceNo. #13 #14 #17 #25 of9M(cid:12).Suchastarwouldrequiremorethan10Myrtoevolve totheRSGphase. Spectraltype B1-3V: B?III: B2:III? O9:I: logL/L 5.0 4.5 4.8 5.4 Thus, we believe that, like other late-type stars in our SIN- (cid:12) T [kK] 20 24 20: 31: FONIfield,star10doesnotbelongtotheWR102ccluster,but ∗ M [M ] 18: 13: 15 27: insteadrepresentsapreviousepisodeofstarformationintheGC ini (cid:12) (cid:51) [kms−1] 100 90 70 100 region. This is similar to the conclusion reached by Liermann rad A [mag] 2.8 2.9 2.9 2.9 etal.(2012)fromtheiranalysisoftheQuintupletCluster. K Notes.ThesourcenumbercorrespondstoTable2.Acolonfollowinga valueflagsitasuncertain.Theradialvelocitieshaveanuncertaintyof 99..9933 ±40km/sduetothelimitedspectralresolution. -14.4 1100..7733 1111..8844 88..6699 5.2. Late-typestars o-1]A-14.8 Inadditiontotheearly-typestars,manypointsourceswithlate- -2m 88..6622 c ttyimpeatsepdecfrtoramartehepreeqseunivtailnentthewfiidetlhd.oTfhtehetem12pCeOrat(u2r-e0s)wbearnedeas-t -1 erg s-15.2 88..1166 2ba.3siµsmwfeoldloetwerinmginGeodntzháeleszp-eFcetrrnaálntdyepzese.tTalh.e(2l0u0m8i)n.oOsnitythcelsaasmsees [log fλ-15.6 77..5500 were ranked on the basis of the CO index (Blum et al. 1996, 1155..5588 2003).TheextinctionwasobtainedfromcomparisonofMARCS J H K A C D E models(Gustafssonetal.2008)withthemeasuredphotometric s -16.0 values in the infrared (Lucas et al. 2008; Ramírez et al. 2008; 2MASS Spitzer IRAC Churchwell et al. 2009; Dong et al. 2011). The distance modu- 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 luswastheninferredfromthisextinctionbycomparisonwiththe log λ / Ao curvespublishedbySchultheisetal.(2014),whichthenalsoim- Fig. 10. Spectral energy distribution (SED) of star 10 (MSX6C pliestheluminosity.Theparametersoflate-typestarsaregiven G000.1668-00.0434)fittedbyaMARCSmodel(redcurve)withT = ∗ inTable6. 3.3kK, logL/L = 3.65, and logg = 1.0. The boxes represent pho- (cid:12) tometry from 2MASS J, H, and K (blue, labels = magnitudes), HST Table6.Thelate-typestarsinthefield NICMOSF190N(black),andSpitzerIRAC(black)inthemid-IR.The modelisreddenedwithanextinctionofE =8.3mag. B−V No. A E d logL MK lum. Ks B−V [mag] [mag] [kpc] [L ] type class (cid:12) #1 2.9 8.4 8.0 2.8 M0 II 5.3. WR102cstarcluster #2 2.2 6.3 5.8 2.1 M1 III #3 2.1 6.0 5.5 1.7 K1 III Thepresenceofearly-typestarswithin0.9pcofWR102cmay #4 2.1 6.0 5.5 1.5 K4 III indicatethattheseobjectsrepresentanindependentcluster.Al- #5 3.3 9.5 8.1 2.7 M0 II ternatively,theWR102cclustermayberelatedtothesamestar- #6 2.9 8.3 8.0 2.7 M0 II burstthatproducedtheQuintupletCluster.Yetanotherpossibil- #7 2.9 8.3 8.0 2.2 K5 III ityisthatalltheearly-typestarsclosetoWR102carepartofthe #8 2.8 8.0 8.0 2.3 K4 II Quintuplet’stidaltail.SuchtailshavebeenpredictedbyHabibi #9 1.9 5.6 5.3 1.8 M0 III et al. (2014) for the Arches and Quintuplet with extensions up #10 2.9 8.3 8.0 3.6 M5-6 I to 1.6pc from the cluster centre. In any case, the presence of a #11 2.9 8.2 8.0 2.6 K5 II cluster around WR102c seems to be inconsistent with the sce- #12 2.8 8.0 8.0 3.0 M1 II nariothatWR102cwasbornintheQuintupletandejectedfrom #16 2.6 7.5 7.3 3.1 K0 II there. #18 2.8 8.0 8.0 2.3 K3 III We used the publicly available cluster evolution code #19 2.2 6.3 5.8 1.9 K5 III McLuster (Küpper et al. 2011) to estimate the mass of the #20 2.0 5.7 6.2 1.5 K5 III WR102c cluster. Assuming a standard Kroupa IMF (Kroupa #21 2.5 7.3 7.2 1.8 M0 III 2001),themassoftheWR102cclusteris∼ 1000M .Thesim- (cid:12) #22 2.5 7.3 7.2 2.1 M0 III ulationaccuratelyreproducesthemassofthemostmassivestar #23 2.2 6.3 5.8 1.9 K4 III andthenumberofearly-typestarsweobserved.Giventhesen- #24 2.2 6.3 5.8 1.9 K2 III sitivityofourobservations(K = 14−15mag)wewereableto s detectonlystarsearlierthanB1-2,i.e.withmassesabove10M . (cid:12) Adoptinganenclosedmassof∼1000M andacharacteris- (cid:12) The brightest star in the field (no. 10 in Table2 and Fig.2) tic cluster radius R ≈ 1pc we estimate the velocity dispersion 0 is an M5-6I red supergiant. It is similar to the other late-type withintheclusterstarstobeonlyafewkms−1 (followingequa- stars; we obtained its spectrum and fitted the SED as shown in tion1 in Kroupa 2002). In summary, the number of early-type Figure10. The extinction and luminosity suggest that the star stars,theirages,masses,andradialvelocitiesconsistentlyagree most likely resides in the GC region. On the other hand, its ra- withtheseobjectsbeingthebrightestmembersofayetunknown dialvelocity(−45kms−1)isatoddswiththeradialvelocitiesof starcluster. Articlenumber,page9of10 A&Aproofs:manuscriptno.wr102c_arxiv 6. Summaryandconclusions Ekström,S.,Georgy,C.,Eggenberger,P.,etal.2012,A&A,537,A146 Figer,D.F.,Kim,S.S.,Morris,M.,etal.1999a,ApJ,525,750 UsingVLTSINFONIweobtainedintegralfieldobservationsof Figer,D.F.,McLean,I.S.,&Morris,M.1999b,ApJ,514,202 0.25 square arcmin area around WR102c located at ≈ 2.5pc Fitzpatrick,E.L.&Massa,D.2009,ApJ,699,1209 (projected distance) from the Quintuplet Cluster in the GC re- Flagey,N.,Noriega-Crespo,A.,Billot,N.,&Carey,S.J.2011,ApJ,741,4 Freyer,T.,Hensler,G.,&Yorke,H.W.2006,ApJ,638,262 gion. Garcia-Segura,G.&MacLow,M.-M.1995,ApJ,455,160 We identified five early-type stars (including WR102c) in González-Fernández,C.,Cabrera-Lavers,A.,Hammersley,P.L.,&Garzón,F. thisfield.Basedontheirage,radialvelocity,andmassdistribu- 2008,A&A,479,131 tion we suggest that these are the most massive members of a Gräfener,G.,Koesterke,L.,&Hamann,W.-R.2002,A&A,387,244 bound WR102c cluster with M ∼ 1000M . The existence of Gräfener,G.,Vink,J.S.,Harries,T.J.,&Langer,N.2012,A&A,547,A83 cl (cid:12) Gustafsson,B.,Edvardsson,B.,Eriksson,K.,etal.2008,A&A,486,951 suchaclusterquestionstheejectionscenarioforthepresentday Gvaramadze,V.V.,Chené,A.-N.,Kniazev,A.Y.,etal.2014,MNRAS,442,929 locationofWR102c. Gvaramadze,V.V.,Fabrika,S.,Hamann,W.-R.,etal.2009,MNRAS,400,524 The detailed analysis of the stellar spectrum and photome- Habibi,M.,Stolte,A.,&Harfst,S.2014,A&A,566,A6 tryofWR102cbymeansofnon-LTEstellaratmospherePoWR Hainich,R.,Rühling,U.,Todt,H.,etal.2014,A&A,565,A27 Hamann,W.-R.&Gräfener,G.2004,A&A,427,697 models yielded stellar and wind parameters typical for a WN6 Hamann,W.-R.,Gräfener,G.,&Liermann,A.2006,A&A,457,1015 star(Table3).Theuncertaintyofthededucedstellarparameters Hamann,W.-R.&Koesterke,L.1998a,A&A,335,1003 ofWR102cismildandmightreflectsomedeparturesofstellar Hamann,W.-R.&Koesterke,L.1998b,A&A,333,251 wind from spherical symmetry, e.g. due to the fast rotation or Hanson,M.M.,Conti,P.S.,&Rieke,M.J.1996,ApJS,107,281 binarity. Hanson,M.M.,Kudritzki,R.-P.,Kenworthy,M.A.,Puls,J.,&Tokunaga,A.T. We produced a map of diffuse Brγ emission in the region 2005,ApJS,161,154 Homeier,N.L.,Blum,R.D.,Pasquali,A.,Conti,P.S.,&Damineli,A.2003, aroundWR102c.Ourdataclearlyshowabipolarorring-shaped A&A,408,153 nebulacentredonWR102c.Thesamenebulaisclearlyseenin Houck,J.R.,Roellig,T.L.,vanCleve,J.,etal.2004,ApJS,154,18 theimagesfromtheHSTPaschen-αsurveyoftheGC.Accord- Ignace,R.,Oskinova,L.M.,&Foullon,C.2000,MNRAS,318,214 Kroupa,P.2001,MNRAS,322,231 ingtothespectraofthenebula,theprojectedexpansionvelocity Kroupa,P.2002,MNRAS,330,707 is small. We suggest that the WR102c nebula is a typical WR Küpper,A.H.W.,Maschberger,T.,Kroupa,P.,&Baumgardt,H.2011,MNRAS, nebula formed recently as the result of the interaction of winds 417,2300 atdifferentevolutionarystages. Lang,C.C.,Goss,W.M.,&Wood,O.S.1997,ApJ,474,275 Lau,R.M.,Hankins,M.J.,Herter,T.L.,etal.2015,ArXive-prints Law,C.&Yusef-Zadeh,F.2004,ApJ,611,858 Acknowledgments Liermann,A.,Hamann,W.,&Oskinova,L.M.2009,A&A,494,1137 Liermann,A.,Hamann,W.-R.,&Oskinova,L.M.2012,A&A,540,A14 This work has extensively used the NASA/IPAC Infrared Sci- Liermann,A.,Hamann,W.-R.,&Oskinova,L.M.2014,A&A,563,C2 Liermann,A.,Hamann,W.-R.,Oskinova,L.M.,Todt,H.,&Butler,K.2010, ence Archive, the NASA Astrophysics Data System, and the A&A,524,A82 SIMBAD database, operated at CDS, Strasbourg, France. This Lucas,P.W.,Hoare,M.G.,Longmore,A.,etal.2008,MNRAS,391,136 publication makes use of data products from the Two Micron Marston,A.P.,Welzmiller,J.,Bransford,M.A.,Black,J.H.,&Bergman,P. All Sky Survey, which is a joint project of the University of 1999,ApJ,518,769 Massachusetts and the Infrared Processing and Analysis Cen- Mauerhan,J.C.,Cotera,A.,Dong,H.,etal.2010,ApJ,725,188 ter/California Institute of Technology, funded by the National Mauerhan,J.C.,VanDyk,S.D.,&Morris,P.W.2011,AJ,142,40 Moneti,A.,Stolovy,S.,Blommaert,J.A.D.L.,Figer,D.F.,&Najarro,F.2001, Aeronautics and Space Administration and the National Sci- A&A,366,106 ence Foundation. Some of the data presented in this paper Oskinova,L.M.2005,MNRAS,361,679 wereretrievedfromtheMikulskiArchiveforSpaceTelescopes Oskinova,L.M.,Hamann,W.-R.,&Feldmeier,A.2007,A&A,476,1331 Oskinova,L.M.,Ignace,R.,Hamann,W.-R.,Pollock,A.M.T.,&Brown,J.C. (MAST). STScI is operated by the Association of Universities 2003,A&A,402,755 for Research in Astronomy, Inc., under NASA contract NAS5- Oskinova,L.M.,Steinke,M.,Hamann,W.-R.,etal.2013,MNRAS,436,3357 26555.SupportforMASTfornon-HSTdataisprovidedbythe Oskinova,L.M.,Todt,H.,Ignace,R.,etal.2011,MNRAS,416,1456 NASAOfficeofSpaceScienceviagrantNNX09AF08Gandby Ramírez,S.V.,Arendt,R.G.,Sellgren,K.,etal.2008,ApJS,175,147 othergrantsandcontracts.WearegratefultoDr.R.Lauforshar- Reid,M.J.1993,ARA&A,31,345 Sander,A.,Hamann,W.-R.,&Todt,H.2012,A&A,540,A144 ingwithusthepreprintofhispaper.Wethanktherefereeforthe Sander,A.,Shenar,T.,Hainich,R.,etal.2015,A&A,577,A13 usefulcommentsandsuggestions.Fundingforthisresearchhas Schmutz,W.,Hamann,W.-R.,&Wessolowski,U.1989,A&A,210,236 beenprovidedbyDLRgrant50OR1302(LMO)andDFGgrant Schneider,F.R.N.,Izzard,R.G.,deMink,S.E.,etal.2014,ApJ,780,117 HA1455/26(AS). Schultheis,M.,Chen,B.Q.,Jiang,B.W.,etal.2014,A&A,566,A120 Schultheis,M.,Ganesh,S.,Simon,G.,etal.1999,A&A,349,L69 Shenar,T.,Hamann,W.-R.,&Todt,H.2014,A&A,562,A118 References Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 Stolte,A.,Hußmann,B.,Morris,M.R.,etal.2014,ApJ,789,115 Barniske,A.,Oskinova,L.M.,&Hamann,W.2008,A&A,486,971 Toalá,J.A.&Arthur,S.J.2011,ApJ,737,100 Blum,R.D.,Ramírez,S.V.,Sellgren,K.,&Olsen,K.2003,ApJ,597,323 Toalá,J.A.,Guerrero,M.A.,Ramos-Larios,G.,&Guzmán,V.2015,A&A, Blum,R.D.,Sellgren,K.,&Depoy,D.L.1996,AJ,112,1988 578,A66 Bonnet,H.,Abuter,R.,Baker,A.,etal.2004,TheMessenger,117,17 Todt,H.,Sander,A.,Hainich,R.,etal.2015,A&A,579,A75 Burgemeister,S.,Gvaramadze,V.V.,Stringfellow,G.S.,etal.2013,MNRAS, Tuthill,P.,Monnier,J.,Tanner,A.,etal.2006,Science,313,935 429,3305 vanDokkum,P.G.2001,PASP,113,1420 Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245 vanMarle,A.J.,Langer,N.,&García-Segura,G.2007,A&A,469,941 Churchwell,E.,Babler,B.L.,Meade,M.R.,etal.2009,PASP,121,213 Vanbeveren,D.,VanBever,J.,&Belkus,H.2007,ApJ,662,L107 Cotera,A.S.,Simpson,J.P.,Erickson,E.F.,etal.1999,ApJ,510,747 Vink,J.S.,Gräfener,G.,&Harries,T.J.2011,A&A,536,L10 Dong,H.,Mauerhan,J.,Morris,M.R.,Wang,Q.D.,&Cotera,A.2015,MN- Wachter,S.,Mauerhan,J.C.,VanDyk,S.D.,etal.2010,AJ,139,2330 RAS,446,842 Dong,H.,Wang,Q.D.,Cotera,A.,etal.2011,MNRAS,417,114 Wang,Q.D.,Dong,H.,Cotera,A.,etal.2010,MNRAS,402,895 Eisenhauer,F.,Abuter,R.,Bickert,K.,etal.2003,inSocietyofPhoto-Optical Wang,Q.D.,Dong,H.,&Lang,C.2006,MNRAS,371,38 Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. M.Iye&A.F.M.Moorwood,1548–1561 Articlenumber,page10of10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.