The Pennsylvania State University The Graduate School Department of Mechanical Engineering ANALYSIS OF THE LASER POWDER BED FUSION ADDITIVE MANUFACTURING PROCESS THROUGH EXPERIMENTAL MEASUREMENT AND FINITE ELEMENT MODELING A Dissertation in Mechanical Engineering by Alexander Jay Dunbar 2016 Alexander Jay Dunbar © Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 ii The dissertation of Alexander Jay Dunbar was reviewed and approved* by the following. Pan Michaleris Professor of Mechanical Engineering Dissertation Adviser Chair of Committee Timothy W. Simpson Professor of Mechanical and Industrial Engineering Qian Wang Professor of Mechanical Engineering Allison Beese Assistant Professor of Materials Science and Engineering Karen Thole Head of the Department of Mechanical and Nuclear Engineering *Signatures are on file in the Graduate School. iii Abstract The objective in this work is to provide rigourous experimental measurements to aid in the development of laser powder bed fusion (LPBF) additive manufacturing (AM). A specialized enclosed instrumented measurement system is designed to provide in situ experimental measurements of temperature and distortion. Experiments include comparisons of process parameters, materials and LPBF machines. In situ measurements of distortion and temperature made throughout the build process highlight inter-layer distortion effects previously undocumentedfor laser powderbedfusion. Results from these experiments are also be implemented in the development and validation of finite element models of the powder bed build process. Experimental analysis is extended from small-scale to larger part-scale builds where experimental post-build measurements are used in analysis of distortion profiles. Experimental results provided from this study are utilized in the validation of a finite element model capable of simulating production scale parts. The validated finite element model is then implemented in the analysis of the part to provide information regarding the distortion evolution process. A combination of experimental measurements and simulation results are used to identify the mechanism that results in the measured distortion profile for this geometry. iv Optimization of supportstructureprimarilyfocuses ontheminimization ofmaterial use and scan time, but no information regarding failure criteria for support structure is available. Tensile test samples of LPBF built support structure are designed, built, and tested to provide measurements of mechanical properties of the support structure. ExperimentaltestsshowthatLPBFbuiltsupportstructurehasonly30-40%oftheultimate tensile strength of solid material built in the same machine. Experimental measurement of LPBF built support structure provides clear failure criteria to be utilized in the future design and implementation of support structure. v Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Related Work in Welding . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Direct Deposition Additive Manufacturing . . . . . . . . . . . . 3 1.1.3 Laser Powder Bed Fusion Additive Manufacturing . . . . . . . 6 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Objective in this Research . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2. Measurement of Experimental In Situ Distortion and Temperature Measurements During the Laser Powder Bed Fusion Additive Manufacturing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Description of Experimental Procedure . . . . . . . . . . . . . . . . . . 21 vi 2.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Measurement Equipment . . . . . . . . . . . . . . . . . . . . . 26 2.2.3 Processing Parameters . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Chapter 3. Analysis of In Situ Measurements of Distortion and Temperature for the Laser Powder Bed Fusion Additive Manufacturing Process . . . . . . . 40 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Measurement Equipment . . . . . . . . . . . . . . . . . . . . . 46 3.3.2 Description of Experimental Cases . . . . . . . . . . . . . . . . 47 3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.1 Comparison of Ti-6Al-4V and Inconel®718 Builds . . . . . . . 52 3.4.2 Comparison Between EOS M280 and Renishaw AM 250 Laser Powder Bed Fusion Machines . . . . . . . . . . . . . . . . . . . 61 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 vii Chapter 4. Experimental Validation of Finite Element Modeling for Laser Powder Bed Fusion Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1.1 Description of Experimental Builds . . . . . . . . . . 74 4.3.1.2 Description of Measurement Equipment . . . . . . . . 78 4.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 Powder Bed Fusion Simulation . . . . . . . . . . . . . . . . . . . . . . 85 4.4.1 Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.4.2 Mechanical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . 88 4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5.1 Model Comparison To Experimental Measurements . . . . . . . 92 4.5.2 Substrate Deformation . . . . . . . . . . . . . . . . . . . . . . . 97 4.5.3 Extension of Rotating Scan Pattern Case . . . . . . . . . . . . 102 4.5.4 Distortion Evolution in Time . . . . . . . . . . . . . . . . . . . 104 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 viii Chapter 5. ExperimentalMeasurementofMechanicalPropertiesofLaserPowderBed Fusion Built Support Structure . . . . . . . . . . . . . . . . . . . . . . 113 5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3 Description of Experimental Procedure . . . . . . . . . . . . . . . . . . 116 5.3.1 Design of Experimental Test Pieces . . . . . . . . . . . . . . . . 116 5.3.2 Processing parameters . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.3 Measurement Procedure . . . . . . . . . . . . . . . . . . . . . . 122 5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Chapter 6. Conclusions And Future Work . . . . . . . . . . . . . . . . . . . . . . . 138 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 ix List of Tables 2.1 Description of experimental cases . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Post-process measurements of the cases . . . . . . . . . . . . . . . . . . . 36 3.1 Description of experimental cases . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Post-process measurements for Case 1 (Ti-6Al-4V) and Case 2 (Inconel® 718) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Post-process measurements for Case 3 (Ti-6Al-4V) and Case 4 (Inconel® 718) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.4 Post-process measurements of Case 1 (EOS M280) and Case 5 (Renishaw AM250) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1 Description of Experimental Cases . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Case 1 (rotating scan pattern) peak distortion comparison by percent deviation with experimental measurements . . . . . . . . . . . . . . . . . 82 4.3 Case 2 (constant scan pattern) peak distortion comparison by percent deviation with experimental measurements . . . . . . . . . . . . . . . . . 83 4.4 Temperature dependent thermal properties of solid Inconel® 718 [1,2] . . 88 4.5 Temperature dependent mechanical properties of solid Inconel® 718 [3] . 89 4.6 As-used constant material properties and processing conditions . . . . . . 89 x 4.7 Comparison of experimental measurements and simulation results for Case 1 (Rotating scan pattern). The error is averaged at each nodal location in the FE model along the height of the part for each measurement location(Figure 4.4). Measurements are normalized by the experimental distortion measurement at each height . . . . . . . . . . . . . . . . . . . . 95 4.8 Comparison of experimental measurements and simulation results for Case 2 (Constant scan pattern). The error is averaged at each node in the FE model along the height of the part for each measurement location (Figure 4.4). Measurements are normalized by experimental distortion measurement at each height . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.9 Comparison of experimental measurements and simulation results for Case 2 (Constant scan pattern) with and without a flexible substrate. The error is averaged at each node in the FE model along the height of the part for each measurement location (Figure 4.4). Measurements are normalized by experimental distortion measurement at each height . . . . . . . . . . . . 102 5.1 Description of tensile samples . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2 Description of experimental cases (NA - Not Applicable) . . . . . . . . . . 122 5.3 Averaged Results for Tensile Tests . . . . . . . . . . . . . . . . . . . . . . 124
Description: