ebook img

Analysis of Single-Cell Data : ODE Constrained Mixture Modeling and Approximate Bayesian Computation PDF

108 Pages·2016·4.456 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of Single-Cell Data : ODE Constrained Mixture Modeling and Approximate Bayesian Computation

Carolin Loos Analysis of Single-Cell Data ODE Constrained Mixture Modeling and Approximate Bayesian Computation BestMasters Springer awards „BestMasters“ to the best master’s theses which have been com- pleted at renowned universities in Germany, Austria, and Switzerland. The studies received highest marks and were recommended for publication by supervisors. They address current issues from various fields of research in natural sciences, psychology, technology, and economics. The series addresses practitioners as well as scientists and, in particular, offers guida nce for early stage researchers. Carolin Loos Analysis of Single-Cell Data ODE Constrained Mixture Modeling and Approximate Bayesian Computation Carolin Loos München, Germany BestMasters ISBN 978-3-658-13233-0 ISBN 978-3-658-13234-7 (eBook) DOI 10.1007/978-3-658-13234-7 Library of Congress Control Number: 2016935216 Springer Spektrum © Springer Fachmedien Wiesbaden 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer Spektrum imprint is published by Springer Nature The registered company is Springer Fachmedien Wiesbaden GmbH Acknowledgements IwouldliketobeginbyofferingmysincerestgratitudetomysupervisorDr. JanHase- nauer for his immense support, advice and encouragement, and for truly inspiring my interest in this field of research. I also gratefully acknowledge Dr. Carsten Marr for always taking the time to answer my questions and help me with my problems. Fur- thermore, I would like to thank the members of the groups Data-driven Computational Modeling and Quantitative Single Cell Dynamics for their feedback, explanations and interesting discussions. I am highly indebted to Prof. Dr. Dr. Fabian Theis for giving me the opportunity to work on this interesting project at the ICB. It was a pleasure to explore this fascinating field of research and to write my thesis in such an inspiring working environment. Last, but not least, I would like to thank my family and friends fortheircompanyandconstantsupportthroughouttheyears. CarolinLoos Abstract Investigatingcellularheterogeneityisofgreatimportanceforaholisticunderstandingof biologicalprocessesandisthereforeafocusofsystemsbiology. Thistaskrequiressophis- ticated models of single-cell data, which in turn need parameter estimation approaches thatareabletofitthesemodelstogivenmeasurementdata. The first part of this thesis focuses on using ODE constrained mixture models (ODE- MMs)fortheanalysisofsingle-cellsnapshotdata. Withthesemodelssubpopulationscan beidentifiedandeventhesourceofdifferencesbetweensubpopulationscanbedetected. Weinvestigatethemethod’sapplicabilitytothestudyofthealterationofsubpopulation response by the cellular environment with novel data of NGF-induced Erk signaling, a processrelevantinpainsensitization. Weenhancethemethodbyprovidingamechanistic descriptionofthevariabilityofthesubpopulationsusingmomentequations. Inaddition, weproposeODE-MMsfortheanalysisofmultivariatemeasurements,whichaccountsfor correlations among the measurands. Applying our method to artificial data of a con- version process and to real multivariate data for NGF-induced phosphorylation of Erk enablesanimprovedinsightintotheunderlyingsystem. In the second part of this thesis, we study stochastic dynamics of individuals cells that aremodeledwithcontinuoustimeMarkovchains(CTMCs). Weintroducealikelihood- free approximate Bayesian computation (ABC) approach for single-cell time-lapse data. Thismethodusesmultivariatestatisticsonthedistributionofsingle-celltrajectories. We evaluateourmethodforsamplesofabivariatenormaldistributionandforartificialequi- libriumandnon-equilibriumsingle-celltime-seriesofaone-stagemodelofgeneexpression. Inaddition,weassessourmethodbyapplyingittodatageneratedwithparametervari- ability and to tree-structured time-series data. A comparison with an existing method usingstatisticsrevealsanimprovedparameteridentifiabilityusingmultivariatestatistics. In summary, this thesis introduces two novel approaches for the analysis of multivari- atedatathatcanbeusedtostudycellularheterogeneitybasedonsingle-celldata. Kurzfassung Ein tiefgehendes Verst¨andnis fu¨r die Mechanismen von biologischen Prozessen erfordert die Erforschung der Heterogeneit¨at von Zellpopulationen. Aus diesem Grund bildet die Untersuchung heterogener Zellpopulationen aktuell einen Forschungsschwerpunkt in der Systembiologie. Hierfu¨r werden komplexe mathematische Modelle ben¨otigt, welche wie- derumParametersch¨atzungsmethodenerfordern,dieinderLage,sinddieseModellemit gegebenenMessdatenzusammenzufu¨hren. DerersteTeildieserArbeitbefasstsichmitderAnalysevonEinzelzelldaten,fu¨rwelcheje- weilsdieVerteilungendergemessenenKonzentrationenindenZellenzueinembestimmten Zeitpunkt gegeben sind. Fu¨r diese Analyse nutzen wir ODE constrained mixture models (ODE-MMs),sogenannteMischmodelle,welchedurchgew¨ohnlicheDifferentialgleichungen beschr¨ankt sind. Mit diesen Modellen k¨onnen Subpopulationen innerhalb einer Zellpo- pulation ermittelt, und sogar die Ursache fu¨r den Unterschied zwischen den Subpopu- lationen identifiziert werden. Wir verwenden diese Methode erstmals zur Untersuchung vonVer¨anderungvonSubpopulationsreaktionenaufgrundderZellumgebung.DieseAna- lyseerfolgtaufneuenDatenfu¨rdiedurchNGFinduziertePhosphorylierungvonErk,ein fu¨rdieSchmerzsensitivierungrelevanterProzess.WirverbesserndieMethode,indemwir Momentengleichungenfu¨rdiemechanistischeBeschreibungderSubpopulationenverwen- den.Daru¨berhinausentwickelnwirODE-MMszurAnalysevonmultivariatenMessungen, wodurchKorrelationenzwischenMessungenberu¨cksichtigtwerden.WirtestenunsereMe- thodeanhandvonartifiziellenDateneinesKonversionsprozessesundanhandmultivariater Messungenfu¨rNGFinduzierteErk-Phosphorylierung.Eszeigtsich,dassunsereMethode einengenauerenEinblickindaszugrundeliegendebiologischeSystemerm¨oglicht. ImzweitenTeildieserArbeitanalysierenwirstochastischeDynamikenvonindividuellen Zellen,welchedurchMarkovketteninstetigerZeitmodelliertwerden.Hierfu¨rstellenwir eineaufApproximateBayesianComputation(ABC)basierende,Likelihood-freieMethode zur Parametersch¨atzung von Einzellzellzeitreihen vor. Diese Methode nutzt multivariate StatistikenaufderVerteilungvonEinzellzelltrajektorien.WirevaluierenunsereMethode X Kurzfassung sowohl fu¨r Daten, die durch eine bivariate Normalverteilung generiert wurden als auch fu¨rartifizielleEinzellzellzeitreiheneineseinstufigenGenexpressionmodells,welchesichin und außerhalb ihres station¨aren Gleichgewichts befinden. Der Vergleich mit einer exis- tierenden Method, die Statistiken verwendet, verdeutlicht, dass durch eine multivariate BetrachtungdieModellparameterbesseridentifiziertwerdenk¨onnen. Zusammenfassend werden in dieser Arbeit zwei neuartige Methoden zur Analyse von multivariatenDatenentwickelt.Diesesindgeeignet,umheterogeneZellpopulationenba- sierendaufEinzelzelldatenzuuntersuchen. Contents List of Figures XIII List of Tables XV List of Abbreviations XVII List of Symbols XIX 1 Introduction 1 1.1 ModelingandParameterEstimationforSingle-CellData . . . . . . . . . . 1 1.2 ContributionofthisThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background 5 2.1 ExperimentalData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 ModelingChemicalKinetics . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 ParameterInference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 ODE Constrained Mixture Modeling for Multivariate Data 15 3.1 IntroductionandProblemStatement . . . . . . . . . . . . . . . . . . . . . 15 3.2 AssessmentofODE-MMsUsingNovelDataforNGF-InducedErkSignaling 17 3.3 ModelingVariabilitywithinaSubpopulation . . . . . . . . . . . . . . . . . 25 3.4 SimultaneousAnalysisofMultivariateMeasurements . . . . . . . . . . . . 40 3.5 ApplicationExample: NGF-InducedErkSignaling. . . . . . . . . . . . . . 50 3.6 DiscussionandOutlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Approximate Bayesian Computation Using Multivariate Statistics 57 4.1 IntroductionandProblemStatement . . . . . . . . . . . . . . . . . . . . . 57 4.2 ExtendedIntroductiontoApproximateBayesianComputation . . . . . . . 59 4.3 ApproximateBayesianComputationwithMultivariateTestStatistics . . . 65 4.4 SimulationExample: Single-CellTime-SeriesofaOne-StageModelofGene Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.