Analysis of Reflective Cracks in Airfield Pavements Using a 3-D Generalized Finite Element Method J.Garzon, C.A.Duarte† andW. Buttlar DepartmentofCivilandEnvironmentalEngr., UniversityofIllinoisatUrbana-Champaign, NewmarkLaboratory, 205NorthMathewsAvenue, Urbana,IL61801,USA {jgarzon2,caduarte,buttlar}@illinois.edu †CorrespondingAuthor RÉSUMÉ. ABSTRACT. Predictionandsimulationofload-relatedreflectivecrackinginairfieldpavements require three-dimensionalmodels in order to accurately capture the effects of gear loads on crack initiation and propagation. In this paper, we demonstrate that the Generalized Finite ElementMethod(GFEM)enablestheanalysisofreflectivecrackinginathree-dimensionalset- tingwhilerequiringsignificantlylessuserinterventioninmodelpreparationthanthestandard FEM.Assuch,itprovidessupportforthedevelopmentofmechanistic-baseddesignprocedures forairfieldoverlaysthatareresistanttoreflectivecracking. TwogearloadingpositionsofaBoeing777aircraftareconsideredinthisstudy.Thenumerical simulationsshowthatreflectivecracksinairfieldpavementsaresubjectedtomixedmodebe- haviorwithallthreemodespresent.Theyalsodemonstratethatundersomeloadingconditions, thecracksexhibitsignificantchanneling. MOTS-CLÉS: KEYWORDS:Fracture;Reflectivecracks;Finiteelementmethod;Generalizedfiniteelementmethod; Extendedfiniteelementmethod RoadMaterialsandPavementDesign.VolumeX-n X/2009,pages1à15 ◦ 2 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ 1. Introduction Veryoften,asphaltoverlaysareusedtorestoresmoothness,structure,andwater- proofing benefits to existing airfield pavements. However, the controlling factor for overlaylifespanisoftenreflectivecrackinginthenewoverlaycausedbystresscon- centrationsinthevicinityofjointsandcracksintheunderlyingpavement.Reflective crackingcanleadtoroughness,spalling,andmoistureinfiltrationatjointsandcracks, which can greatly reduce the life expectancy of the overlay. Advanced spalling can alsosignificantlyincreaseFODpotential. Historically,reflectivecrackingisthoughttobedrivenbyboththermal(non-load associated)andmechanicalgearloading(loadassociated)forces[BOZ02,KIM02]. Toolsarenowavailabletoaidthedesignerintheselectionofanappropriateasphalt binder and mixture to resist thermally induced cracking. This includes both thermal (top-down)cracking[AAS09b,AAS09a],andthermallyinducedreflectivecracking, or bottom-up cracks, emanating from the vicinity of cracks and joints in the under- lyingpavement[DAV10].However,recentresearchhasindicatedthatthesuccessful predictionandabilitytodesignagainstreflectivecrackingliesintheabilitytounder- standandaccountforload-relatedreflectivecrackingmechanisms[BAE08,DAV07]. Load-related reflective cracking mechanisms are more difficult to predict through modelingandsimulation,asitisnecessarytostudythisphenomenoninthreedimen- sions(3-D)inordertoaccuratelycapturetheeffectsofgearloadsoncrackinitiation andpropagation.Previousresearchhasalsodemonstratedtheneedtodirectlyaccount forthepresenceandpropagationofcracks,inordertoavoidmeshdependentnumeri- calresults.Ina3-Dsetting,thismeansthatallmodesofcrackingmustbeconsidered, i.e.,ModeI(opening),ModeII(shearing),andModeIII(tearing).Theneedfortrue 3-D modeling of reflective cracking complicates the development of computational models using standard finite element methods. The Generalized or Extended Finite ElementMethod[BAB94,BAB97,ODE98,DUA00,MO9˜9,SUK00,MO0˜2]adds flexibility to the FEM while retaining its attractive features. A brief review of the GeneralizedFEM(GFEM)ispresentedinSection3. In this paper, we demonstrate that the GFEM enables the analysis of reflective crackingina3-Dsettingwhilerequiringsignificantlylessuserinterventioninmodel preparation. As such, it provides support for the development of mechanistic based designproceduresforairfieldoverlaysthatareresistanttoreflectivecracking. 2. FormulationofProblem Inthispaper,weanalyzethreedimensionalreflectivecracksassuminglinearelas- ticisotropicmaterialbehavior.Thissectionpresentsthestrongandweekformulations for this class of problem. The solution methodology based on the Generalized FEM (cf.Section3)is,however,applicabletoothermaterialmodels,suchasvisco-elastic orvisco-plasticbehavior. 3-DAnalysisofReflectiveCracks 3 2.1. EquilibriumEquations Considerathree-dimensionaldomainW withboundary¶ W decomposedas¶ W = ¶ W u ¶ W s with ¶ W u ¶ W s =0/. The domain geometry is arbitrary and may have ∪ ∩ cracks.Theequilibriumequations,constitutiveandkinematicrelationsaregivenby sss +bbb = 000 inW (1) ▽· sss = CCC:eee eee = uuu s ▽ wheresss istheCauchystresstensor,bbbarebodyforces,eee isthelinearstraintensor, s ▽ isthesymmetricpartofthegradientoperatorandCCCistheHooke’stensor.Thematerial propertiesareassumedconstantwithineachlayerofthepavement(cf.Figure7). Theboundaryconditionsprescribedin¶ W areasfollows uuu = uuu¯ on¶ W u sss nnn = tt¯t on¶ W s · wherennnisanoutwardunitnormalvectoron¶ W anduuu¯ andtt¯t areprescribeddisplace- mentsandtractions,respectively. 2.2. WeakForm ThePrincipleofVirtualWorkfortheproblemdescribedaboveisgivenby Finduuu H1(W )suchthat vvv H1(W ) ∈ ∀ ∈ sss (uuu):eee (vvv)dxxx+h uuu vvvdsss= tt¯t vvvdsss+h uuu¯ vvvdsss (2) ZW Z¶ W u · Z¶ W s · Z¶ W u · where H1(W ) is a Hilbert space defined on W and h is a penalty parameter. We use thepenaltymethodtoimposedisplacementboundaryconditionsduetoitssimplicity and generality. The computation of an approximation uuuh of the solution uuu using the GeneralizedFEMisdescribedinthenextsection. 3. TheGeneralizedFiniteElementMethod TheGeneralizedFEMcanberegardedasafiniteelementmethodwithshapefunc- tionsbuiltusingtheconceptofapartitionofunity.Thismethodhasitsoriginsinthe worksofBabuškaetal.[BAB94,BAB97,MEL96](underthenames“specialfinite elementmethods”,“generalizedfinite elementmethod”and“finiteelementpartition of unity method”) and Duarte and Oden [DUA95, DUA96b, DUA96c, DUA96a, ODE98](underthenames“hpclouds"and"cloud-basedhpfiniteelementmethod”). 4 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ Several meshfree methods proposed in recent years can also be viewed as special casesofthepartitionofunitymethod.Detailsonthemathematicalformulationofthe GFEM canbefoundin,e.g.,[MEL96,BAB97,DUA00,ODE98,STR01].Inthis section,wesummarizethemainconceptsofthemethod. The linear finite element shape functions j a , a =1,...,N, in a finite element meshwithN nodesconstituteapartitionofunity,i.e., N (cid:229) j a (xxx)=1 a =1 forallxxxinadomainW coveredbythefiniteelementmesh.Thisisakeypropertyused inpartitionofunitymethodsand,inparticular,intheGFEM. AGFEM shapefunctionf a i isbuiltfromtheproductofaFEshapefunctionj a andanenrichmentfunctionLa i f a i(xxx)=j a (xxx)La i(xxx) (nosummationona ), (3) wherea isanodeinthefiniteelementmesh.Figure1illustratestheconstructionof GFEMshapefunctions. (cid:0) L (cid:1)(cid:2) i (cid:1) (cid:3) (cid:1) Figure1.ComputationofaGFEMshapefunction(bottomsurface).Thefiniteelement shapefunctionj a isshownatthetop,whiletheenrichmentfunctionLa i isshownas the middle surface. The resulting function at the bottom, f a i is the generalized FE shapefunction. Thisprocedureallowstheconstructionofshapefunctionswhichcanapproximate wellthesolutionofaproblem.Featuressuchasdiscontinuitiesormaterialinterfaces arerepresentedbyajudiciouschoiceofenrichmentfunctionsLa i(xxx),insteadoffinite elementmesheswithelementfacesfittingthem. 3-DAnalysisofReflectiveCracks 5 Severalenrichmentfunctionscanbehierarchicallyaddedtoanynodea inafinite elementmesh.Thus,ifD isthenumberofenrichmentfunctionsatnodea ,theGFEM L approximation,uuuh,ofafunctionuuucanbewrittenas uuuh(xxx) = (cid:229)N (cid:229)DL uuua if a i(xxx)= (cid:229)N (cid:229)DL uuua ij a (xxx)La i(xxx) a =1i=1 a =1i=1 = (cid:229)N j a (xxx)(cid:229)DL uuua iLa i(xxx)= (cid:229)N j a (xxx)uuuah(xxx) a =1 i=1 a =1 where uuua i, a =1,...,N, i=1,...,DL, are nodal degrees of freedom and uuuha (xxx) is a local approximation of uuu defined on w a = xxx W :j a (xxx)=0 , the support of thepartitionofunityfunctionj a .Inthecaseof{afi∈niteelement6part}itionofunity,the supportw a (oftencalledacloudorapatch)isgivenbytheunionofthefiniteelements sharingavertexnode xxxa [DUA00]. The GFEM approximation uuuh isthe solutionof thefollowingproblem Finduuuh XXXh(W ) H1(W )suchthat, vvvh XXXh(W ) ∈ ⊂ ∀ ∈ sss (uuuh):eee (vvvh)dxxx+h uuuh vvvhdsss= hhh¯ vvvhdsss+h uuu¯ vvvhdsss (4) ZW Z¶ W u · Z¶ W s · Z¶ W u · where,XXXh(W )isasubspaceofH1(W )generatedbytheGFEMshapefunctionsdefined in(3). The local approximations uuuah, a = 1,...,N, belong to local spaces c a (w a ) = smpeannt{oLriab}aDis=Li1sdfuenficnteiodnosnfothreaspuaprptiocrutlsawrlao,caal=spa1c,e..c.,aN(w.Ta )hedespeleencdtisoonnotfhteheloecnarlicbhe-- havior of the function uuu over the cloud w a . The case of 3-D fractures is discussed below. 3.1. Enrichmentfunctionsfor3-Dcracks Inthissection,enrichmentfunctionsfor3-Dcracksarebrieflydescribed.Further details can be found in [PER09a]. Three types of enrichment functions are consid- ered: (i)Enrichmentforcloudsw a thatdonotintersectthecracksurface. In this case, the elasticity solution uuu is continuous and can be approximated by polynomial functions. Our implementation follows [ODE98, DUA00] and the en- richments functions {La i}Di=L1 for a cloud associated with node xxxa =(xa ,ya ,za ) is givenby {La i}Di=L1=(cid:26)1,(x−haxa ),(y−haya ),(z−haza ),(x−ha2xa )2,(y−h2aya )2,...(cid:27) (5) withha beingascalingfactor[ODE98,DUA00]. 6 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ (ii)Enrichmentforcloudscompletelycutbythecracksurface. Inthiscase,thecracksurfacedividesw a intotwosub-domains,w a+ andw a− such thatw a =w a+ w a−.Theenrichmentsfunctionsaretakenas ∪ {La i}Di=L1=(cid:26)H,H (x−haxa ),H (y−haya ),H (z−haza ),H (x−ha2xa )2,H (y−h2aya )2,...(cid:27) (6) wherethefunctionH (xxx)denotesadiscontinuousfunctiondefinedby H(xxx)= 1 ifxxx∈w a+ (7) (cid:26) 0 otherwise These discontinuous functions can approximate discontinuities of the elasticity solutionuuuinsideafiniteelement. (iii)Enrichmentforcloudsthatintersectthecrackfront. Terms from the asymptotic expansion of the elasticity solution near crack fronts are used as enrichment functions in clouds that intersect the crack front. Their de- scriptionismoreelaboratedthanthepreviousonesandwerefertheinterestedreader toreferences[PER09a,DUA00,DUA01]. With the above enrichments, the finite element mesh is not required to fit crack surfacessincethediscontinuitiesandsingularitiesareapproximatedbytheenrichment functions,nottheFEMmesh.ThisisincontrastwiththeFEMandgreatlyfacilitate the solution of fracture mechanics problems in complex 3-D domains such as those foundinairfieldpavements.ThisfeatureoftheGFEMisillustratedinFigures2and 11. 3-DAnalysisofReflectiveCracks 7 Figure2.Three-dimensionalcrackinapavement.Thecrackcanbeinsertedintoan existingfiniteelementmeshwithoutrequiringmodificationsontheFEmeshoriginally designedtorepresentanuncrackedpavement.Thecrackisapproximatedbydiscon- tinuousenrichmentfunctions,nottheFEMmesh. 8 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ 4. Inclinedellipticalcrack ThisexampleisaimedatverifyingtheGFEMmethodologyinamixedmodefrac- ture case. The problem consists of an inclined elliptical crack of dimensions a/c= 9/15embeddedinacubeofedgesizeb,asillustratedinFigure3.Inordertoreduce the finite domain effect on the solution, the relation c/b=3/40 is set. The Young’s modulususedinthisexampleisE =1.0whilethePoisson’sratioissetton =0.25. Thecracksurfacehasaninclinationa =30 withrespecttothehorizontalaxis.The ◦ domainissubjectedtoauniformtensiletractions =1intheverticaldirection.Figure 3showsthemodelandtheinitialcoarsemeshuse◦dinthisexample.Inthediscretiza- tion of the solution, localized mesh refinement on elements that intersect the crack frontisappliedalongwithnodalenrichments.Polynomialenrichmentoforder p=3 (cf.Eq.(5))isappliedovertheentiredomain,discontinuousstepfunctionenrichment (cf. Eq. (6)) is applied at the nodes of the elements that are cut by the crack surface andtheasymptoticsolutionenrichmentisusedatelementscutbythecrackfront.The ratio of the element size, L, to crack length, a, for elements along the crack front is 0.054<L/a<0.088afterthemeshrefinementisapplied. ThestressintensityfactorsformodesI,II,andIII ofaninclinedellipticalcrack embedded in an infinite domain are used as references. These SIFs are given by [TAD00] s sin2g √p a a 2 14 KIinf. = ◦ E(k) (cid:20)sin2q +(cid:16)c(cid:17) cos2q (cid:21) s sing cosg √p ak2 k 1 KIiInf. = − ◦ 1 (cid:20)B′cosw cosq +Csinw sinq (cid:21) a 2 4 sin2q + cos2q (cid:20) (cid:16)c(cid:17) (cid:21) s sing cosg √p a(1 n )k2 1 k KIiInIf. = ◦ − 1 (cid:20)Bcosw sinq −C′sinw cosq (cid:21) a 2 4 sin2q + cos2q (cid:20) (cid:16)c(cid:17) (cid:21) whereB,C,K(k)andE(k)aredefinedas B=(k2 n )E(k)+n kK(k), C=(k2 n k2)E(k) n k2K(k), ′ ′ ′ − − − K(k)= p2 dj , E(k)= p2 1 k2sin2j dj , Z0 1 k2sin2j R0 q − q − andk2=1 k2, k =a/c andq is a parametric angle representing a point A onthe ′ ′ crackfront−(cf.Figure3).Fortheexamplesolvedinthissection,g =p /2 a =p /3 andw =0. − The extracted stress intensity factors for mode I, II, and III using the GFEM methodologyarepresentedinFigure4.Theseresultsarecomparedwiththeanalytical 3-DAnalysisofReflectiveCracks 9 (cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1) (cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:3)(cid:9)(cid:11)(cid:12)(cid:13)(cid:10)(cid:14)(cid:3)(cid:9)(cid:15)(cid:10)(cid:16)(cid:17)(cid:3)(cid:17)(cid:18)(cid:16)(cid:19)(cid:20) (cid:22) (cid:2)(cid:2) (cid:3)(cid:3) (cid:21) (cid:22) (cid:9) (cid:26)(cid:16)(cid:27)(cid:24)(cid:18)(cid:15)(cid:25) (cid:22) (cid:22) (cid:22) (cid:23)(cid:10)(cid:16)(cid:19)(cid:17)(cid:24)(cid:18)(cid:15)(cid:25) Figure3. Cubesubjectedtotopandbottomuniformtensiletractionsandrepresenta- tionofinclinedellipticalcrack. 0.8 0.6 0.4 F SI d e zaliz 0.2 m or N 0 KI inf. -00.22 KKIIIIIIIiinnff.. KI GFEM KII GFEM KIII GFEM --00.44 0 50 100 150 200 250 300 350 Parametric Angle (deg.) (cid:28) Figure4.StressintensityfactorsformodesI,II,andIII. 10 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ solutionforaninfinitedomainandexcellentagreementcanbeobservedbetweenthe twosolutionsforallthreemodes. 5. AnalysisofReflectiveCracksinAirfieldPavements Sincethepurposeofthisstudyistoanalyzeratherthandesignatypicalpavement sectionofanairport thatservesthe Boeing777aircraftwas selectedtobe modeled. ThemodelgeometryandpavementcrosssectionsfortheunderlyingPCCarearbitrar- ilyselectedasthestandardsectionofrunway4L-22RatO’HareAirport. Athree-dimensionalfiniteelementmeshwascreatedtorepresenttheairportpave- mentanditslayers.Also,atwo-dimensionalfiniteelementmeshwascreatedtorep- resentthegeometryofthecracksurface.Bymodelingthe3-Dpavementmeshandin- sertingthe2-Dcracksurfacemeshjustabovetheconcretejoint,areflectivecracking studyinasphaltoverlaywasperformedwithTheGeneralizedFiniteElementMethod describedintheprevioussection.ModesI,IIandIIIstressintensityfactorsarecom- putedalongthecrackfrontinordertoinvestigatethethree-dimensional,mixedmode crackdrivingmechanismsinatypicalairfieldpavement. 5.1. ModelGeometry ThepavementmodelencompasseshalfoftwoadjacentslabsandonePCCjointas illustratedbytheshadedregioninFigure5.Thesimulatedairfieldpavementiscom- posedofan20cmasphaltoverlay;23cmconcreteslabs,eachwithplandimensions of 6 m 5.7 m (PCC), and;an 28 cmcement treatedbase (CTB). A saw cutof 13 × mmwidthismodeledinthePCClayer. Thedimensionsofthecracksurfaceare2.54cmofhightand5cmofdepth.The curvedportionofthecrackhasaradiusof2.54cmandstartsandthemidpointofits depth.Figure6showsthegeometryofthecracksurface. 5.7 m 66mm Figure 5.Airfield pavement analyzed. The shaded square represents the portion of pavementmodeledinthisstudy.
Description: