ebook img

Analysis of Reflective Cracks in Airfield Pavements Using a 3-D Generalized Finite Element Method PDF

20 Pages·2010·2.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of Reflective Cracks in Airfield Pavements Using a 3-D Generalized Finite Element Method

Analysis of Reflective Cracks in Airfield Pavements Using a 3-D Generalized Finite Element Method J.Garzon, C.A.Duarte† andW. Buttlar DepartmentofCivilandEnvironmentalEngr., UniversityofIllinoisatUrbana-Champaign, NewmarkLaboratory, 205NorthMathewsAvenue, Urbana,IL61801,USA {jgarzon2,caduarte,buttlar}@illinois.edu †CorrespondingAuthor RÉSUMÉ. ABSTRACT. Predictionandsimulationofload-relatedreflectivecrackinginairfieldpavements require three-dimensionalmodels in order to accurately capture the effects of gear loads on crack initiation and propagation. In this paper, we demonstrate that the Generalized Finite ElementMethod(GFEM)enablestheanalysisofreflectivecrackinginathree-dimensionalset- tingwhilerequiringsignificantlylessuserinterventioninmodelpreparationthanthestandard FEM.Assuch,itprovidessupportforthedevelopmentofmechanistic-baseddesignprocedures forairfieldoverlaysthatareresistanttoreflectivecracking. TwogearloadingpositionsofaBoeing777aircraftareconsideredinthisstudy.Thenumerical simulationsshowthatreflectivecracksinairfieldpavementsaresubjectedtomixedmodebe- haviorwithallthreemodespresent.Theyalsodemonstratethatundersomeloadingconditions, thecracksexhibitsignificantchanneling. MOTS-CLÉS: KEYWORDS:Fracture;Reflectivecracks;Finiteelementmethod;Generalizedfiniteelementmethod; Extendedfiniteelementmethod RoadMaterialsandPavementDesign.VolumeX-n X/2009,pages1à15 ◦ 2 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ 1. Introduction Veryoften,asphaltoverlaysareusedtorestoresmoothness,structure,andwater- proofing benefits to existing airfield pavements. However, the controlling factor for overlaylifespanisoftenreflectivecrackinginthenewoverlaycausedbystresscon- centrationsinthevicinityofjointsandcracksintheunderlyingpavement.Reflective crackingcanleadtoroughness,spalling,andmoistureinfiltrationatjointsandcracks, which can greatly reduce the life expectancy of the overlay. Advanced spalling can alsosignificantlyincreaseFODpotential. Historically,reflectivecrackingisthoughttobedrivenbyboththermal(non-load associated)andmechanicalgearloading(loadassociated)forces[BOZ02,KIM02]. Toolsarenowavailabletoaidthedesignerintheselectionofanappropriateasphalt binder and mixture to resist thermally induced cracking. This includes both thermal (top-down)cracking[AAS09b,AAS09a],andthermallyinducedreflectivecracking, or bottom-up cracks, emanating from the vicinity of cracks and joints in the under- lyingpavement[DAV10].However,recentresearchhasindicatedthatthesuccessful predictionandabilitytodesignagainstreflectivecrackingliesintheabilitytounder- standandaccountforload-relatedreflectivecrackingmechanisms[BAE08,DAV07]. Load-related reflective cracking mechanisms are more difficult to predict through modelingandsimulation,asitisnecessarytostudythisphenomenoninthreedimen- sions(3-D)inordertoaccuratelycapturetheeffectsofgearloadsoncrackinitiation andpropagation.Previousresearchhasalsodemonstratedtheneedtodirectlyaccount forthepresenceandpropagationofcracks,inordertoavoidmeshdependentnumeri- calresults.Ina3-Dsetting,thismeansthatallmodesofcrackingmustbeconsidered, i.e.,ModeI(opening),ModeII(shearing),andModeIII(tearing).Theneedfortrue 3-D modeling of reflective cracking complicates the development of computational models using standard finite element methods. The Generalized or Extended Finite ElementMethod[BAB94,BAB97,ODE98,DUA00,MO9˜9,SUK00,MO0˜2]adds flexibility to the FEM while retaining its attractive features. A brief review of the GeneralizedFEM(GFEM)ispresentedinSection3. In this paper, we demonstrate that the GFEM enables the analysis of reflective crackingina3-Dsettingwhilerequiringsignificantlylessuserinterventioninmodel preparation. As such, it provides support for the development of mechanistic based designproceduresforairfieldoverlaysthatareresistanttoreflectivecracking. 2. FormulationofProblem Inthispaper,weanalyzethreedimensionalreflectivecracksassuminglinearelas- ticisotropicmaterialbehavior.Thissectionpresentsthestrongandweekformulations for this class of problem. The solution methodology based on the Generalized FEM (cf.Section3)is,however,applicabletoothermaterialmodels,suchasvisco-elastic orvisco-plasticbehavior. 3-DAnalysisofReflectiveCracks 3 2.1. EquilibriumEquations Considerathree-dimensionaldomainW withboundary¶ W decomposedas¶ W = ¶ W u ¶ W s with ¶ W u ¶ W s =0/. The domain geometry is arbitrary and may have ∪ ∩ cracks.Theequilibriumequations,constitutiveandkinematicrelationsaregivenby sss +bbb = 000 inW (1) ▽· sss = CCC:eee eee = uuu s ▽ wheresss istheCauchystresstensor,bbbarebodyforces,eee isthelinearstraintensor, s ▽ isthesymmetricpartofthegradientoperatorandCCCistheHooke’stensor.Thematerial propertiesareassumedconstantwithineachlayerofthepavement(cf.Figure7). Theboundaryconditionsprescribedin¶ W areasfollows uuu = uuu¯ on¶ W u sss nnn = tt¯t on¶ W s · wherennnisanoutwardunitnormalvectoron¶ W anduuu¯ andtt¯t areprescribeddisplace- mentsandtractions,respectively. 2.2. WeakForm ThePrincipleofVirtualWorkfortheproblemdescribedaboveisgivenby Finduuu H1(W )suchthat vvv H1(W ) ∈ ∀ ∈ sss (uuu):eee (vvv)dxxx+h uuu vvvdsss= tt¯t vvvdsss+h uuu¯ vvvdsss (2) ZW Z¶ W u · Z¶ W s · Z¶ W u · where H1(W ) is a Hilbert space defined on W and h is a penalty parameter. We use thepenaltymethodtoimposedisplacementboundaryconditionsduetoitssimplicity and generality. The computation of an approximation uuuh of the solution uuu using the GeneralizedFEMisdescribedinthenextsection. 3. TheGeneralizedFiniteElementMethod TheGeneralizedFEMcanberegardedasafiniteelementmethodwithshapefunc- tionsbuiltusingtheconceptofapartitionofunity.Thismethodhasitsoriginsinthe worksofBabuškaetal.[BAB94,BAB97,MEL96](underthenames“specialfinite elementmethods”,“generalizedfinite elementmethod”and“finiteelementpartition of unity method”) and Duarte and Oden [DUA95, DUA96b, DUA96c, DUA96a, ODE98](underthenames“hpclouds"and"cloud-basedhpfiniteelementmethod”). 4 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ Several meshfree methods proposed in recent years can also be viewed as special casesofthepartitionofunitymethod.Detailsonthemathematicalformulationofthe GFEM canbefoundin,e.g.,[MEL96,BAB97,DUA00,ODE98,STR01].Inthis section,wesummarizethemainconceptsofthemethod. The linear finite element shape functions j a , a =1,...,N, in a finite element meshwithN nodesconstituteapartitionofunity,i.e., N (cid:229) j a (xxx)=1 a =1 forallxxxinadomainW coveredbythefiniteelementmesh.Thisisakeypropertyused inpartitionofunitymethodsand,inparticular,intheGFEM. AGFEM shapefunctionf a i isbuiltfromtheproductofaFEshapefunctionj a andanenrichmentfunctionLa i f a i(xxx)=j a (xxx)La i(xxx) (nosummationona ), (3) wherea isanodeinthefiniteelementmesh.Figure1illustratestheconstructionof GFEMshapefunctions. (cid:0) L (cid:1)(cid:2) i (cid:1) (cid:3) (cid:1) Figure1.ComputationofaGFEMshapefunction(bottomsurface).Thefiniteelement shapefunctionj a isshownatthetop,whiletheenrichmentfunctionLa i isshownas the middle surface. The resulting function at the bottom, f a i is the generalized FE shapefunction. Thisprocedureallowstheconstructionofshapefunctionswhichcanapproximate wellthesolutionofaproblem.Featuressuchasdiscontinuitiesormaterialinterfaces arerepresentedbyajudiciouschoiceofenrichmentfunctionsLa i(xxx),insteadoffinite elementmesheswithelementfacesfittingthem. 3-DAnalysisofReflectiveCracks 5 Severalenrichmentfunctionscanbehierarchicallyaddedtoanynodea inafinite elementmesh.Thus,ifD isthenumberofenrichmentfunctionsatnodea ,theGFEM L approximation,uuuh,ofafunctionuuucanbewrittenas uuuh(xxx) = (cid:229)N (cid:229)DL uuua if a i(xxx)= (cid:229)N (cid:229)DL uuua ij a (xxx)La i(xxx) a =1i=1 a =1i=1 = (cid:229)N j a (xxx)(cid:229)DL uuua iLa i(xxx)= (cid:229)N j a (xxx)uuuah(xxx) a =1 i=1 a =1 where uuua i, a =1,...,N, i=1,...,DL, are nodal degrees of freedom and uuuha (xxx) is a local approximation of uuu defined on w a = xxx W :j a (xxx)=0 , the support of thepartitionofunityfunctionj a .Inthecaseof{afi∈niteelement6part}itionofunity,the supportw a (oftencalledacloudorapatch)isgivenbytheunionofthefiniteelements sharingavertexnode xxxa [DUA00]. The GFEM approximation uuuh isthe solutionof thefollowingproblem Finduuuh XXXh(W ) H1(W )suchthat, vvvh XXXh(W ) ∈ ⊂ ∀ ∈ sss (uuuh):eee (vvvh)dxxx+h uuuh vvvhdsss= hhh¯ vvvhdsss+h uuu¯ vvvhdsss (4) ZW Z¶ W u · Z¶ W s · Z¶ W u · where,XXXh(W )isasubspaceofH1(W )generatedbytheGFEMshapefunctionsdefined in(3). The local approximations uuuah, a = 1,...,N, belong to local spaces c a (w a ) = smpeannt{oLriab}aDis=Li1sdfuenficnteiodnosnfothreaspuaprptiocrutlsawrlao,caal=spa1c,e..c.,aN(w.Ta )hedespeleencdtisoonnotfhteheloecnarlicbhe-- havior of the function uuu over the cloud w a . The case of 3-D fractures is discussed below. 3.1. Enrichmentfunctionsfor3-Dcracks Inthissection,enrichmentfunctionsfor3-Dcracksarebrieflydescribed.Further details can be found in [PER09a]. Three types of enrichment functions are consid- ered: (i)Enrichmentforcloudsw a thatdonotintersectthecracksurface. In this case, the elasticity solution uuu is continuous and can be approximated by polynomial functions. Our implementation follows [ODE98, DUA00] and the en- richments functions {La i}Di=L1 for a cloud associated with node xxxa =(xa ,ya ,za ) is givenby {La i}Di=L1=(cid:26)1,(x−haxa ),(y−haya ),(z−haza ),(x−ha2xa )2,(y−h2aya )2,...(cid:27) (5) withha beingascalingfactor[ODE98,DUA00]. 6 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ (ii)Enrichmentforcloudscompletelycutbythecracksurface. Inthiscase,thecracksurfacedividesw a intotwosub-domains,w a+ andw a− such thatw a =w a+ w a−.Theenrichmentsfunctionsaretakenas ∪ {La i}Di=L1=(cid:26)H,H (x−haxa ),H (y−haya ),H (z−haza ),H (x−ha2xa )2,H (y−h2aya )2,...(cid:27) (6) wherethefunctionH (xxx)denotesadiscontinuousfunctiondefinedby H(xxx)= 1 ifxxx∈w a+ (7) (cid:26) 0 otherwise These discontinuous functions can approximate discontinuities of the elasticity solutionuuuinsideafiniteelement. (iii)Enrichmentforcloudsthatintersectthecrackfront. Terms from the asymptotic expansion of the elasticity solution near crack fronts are used as enrichment functions in clouds that intersect the crack front. Their de- scriptionismoreelaboratedthanthepreviousonesandwerefertheinterestedreader toreferences[PER09a,DUA00,DUA01]. With the above enrichments, the finite element mesh is not required to fit crack surfacessincethediscontinuitiesandsingularitiesareapproximatedbytheenrichment functions,nottheFEMmesh.ThisisincontrastwiththeFEMandgreatlyfacilitate the solution of fracture mechanics problems in complex 3-D domains such as those foundinairfieldpavements.ThisfeatureoftheGFEMisillustratedinFigures2and 11. 3-DAnalysisofReflectiveCracks 7 Figure2.Three-dimensionalcrackinapavement.Thecrackcanbeinsertedintoan existingfiniteelementmeshwithoutrequiringmodificationsontheFEmeshoriginally designedtorepresentanuncrackedpavement.Thecrackisapproximatedbydiscon- tinuousenrichmentfunctions,nottheFEMmesh. 8 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ 4. Inclinedellipticalcrack ThisexampleisaimedatverifyingtheGFEMmethodologyinamixedmodefrac- ture case. The problem consists of an inclined elliptical crack of dimensions a/c= 9/15embeddedinacubeofedgesizeb,asillustratedinFigure3.Inordertoreduce the finite domain effect on the solution, the relation c/b=3/40 is set. The Young’s modulususedinthisexampleisE =1.0whilethePoisson’sratioissetton =0.25. Thecracksurfacehasaninclinationa =30 withrespecttothehorizontalaxis.The ◦ domainissubjectedtoauniformtensiletractions =1intheverticaldirection.Figure 3showsthemodelandtheinitialcoarsemeshuse◦dinthisexample.Inthediscretiza- tion of the solution, localized mesh refinement on elements that intersect the crack frontisappliedalongwithnodalenrichments.Polynomialenrichmentoforder p=3 (cf.Eq.(5))isappliedovertheentiredomain,discontinuousstepfunctionenrichment (cf. Eq. (6)) is applied at the nodes of the elements that are cut by the crack surface andtheasymptoticsolutionenrichmentisusedatelementscutbythecrackfront.The ratio of the element size, L, to crack length, a, for elements along the crack front is 0.054<L/a<0.088afterthemeshrefinementisapplied. ThestressintensityfactorsformodesI,II,andIII ofaninclinedellipticalcrack embedded in an infinite domain are used as references. These SIFs are given by [TAD00] s sin2g √p a a 2 14 KIinf. = ◦ E(k) (cid:20)sin2q +(cid:16)c(cid:17) cos2q (cid:21) s sing cosg √p ak2 k 1 KIiInf. = − ◦ 1 (cid:20)B′cosw cosq +Csinw sinq (cid:21) a 2 4 sin2q + cos2q (cid:20) (cid:16)c(cid:17) (cid:21) s sing cosg √p a(1 n )k2 1 k KIiInIf. = ◦ − 1 (cid:20)Bcosw sinq −C′sinw cosq (cid:21) a 2 4 sin2q + cos2q (cid:20) (cid:16)c(cid:17) (cid:21) whereB,C,K(k)andE(k)aredefinedas B=(k2 n )E(k)+n kK(k), C=(k2 n k2)E(k) n k2K(k), ′ ′ ′ − − − K(k)= p2 dj , E(k)= p2 1 k2sin2j dj , Z0 1 k2sin2j R0 q − q − andk2=1 k2, k =a/c andq is a parametric angle representing a point A onthe ′ ′ crackfront−(cf.Figure3).Fortheexamplesolvedinthissection,g =p /2 a =p /3 andw =0. − The extracted stress intensity factors for mode I, II, and III using the GFEM methodologyarepresentedinFigure4.Theseresultsarecomparedwiththeanalytical 3-DAnalysisofReflectiveCracks 9 (cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1) (cid:2)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:3)(cid:9)(cid:11)(cid:12)(cid:13)(cid:10)(cid:14)(cid:3)(cid:9)(cid:15)(cid:10)(cid:16)(cid:17)(cid:3)(cid:17)(cid:18)(cid:16)(cid:19)(cid:20) (cid:22) (cid:2)(cid:2) (cid:3)(cid:3) (cid:21) (cid:22) (cid:9) (cid:26)(cid:16)(cid:27)(cid:24)(cid:18)(cid:15)(cid:25) (cid:22) (cid:22) (cid:22) (cid:23)(cid:10)(cid:16)(cid:19)(cid:17)(cid:24)(cid:18)(cid:15)(cid:25) Figure3. Cubesubjectedtotopandbottomuniformtensiletractionsandrepresenta- tionofinclinedellipticalcrack. 0.8 0.6 0.4 F SI d e zaliz 0.2 m or N 0 KI inf. -00.22 KKIIIIIIIiinnff.. KI GFEM KII GFEM KIII GFEM --00.44 0 50 100 150 200 250 300 350 Parametric Angle (deg.) (cid:28) Figure4.StressintensityfactorsformodesI,II,andIII. 10 RoadMaterialsandPavementDesign.VolumeX-n X/2009 ◦ solutionforaninfinitedomainandexcellentagreementcanbeobservedbetweenthe twosolutionsforallthreemodes. 5. AnalysisofReflectiveCracksinAirfieldPavements Sincethepurposeofthisstudyistoanalyzeratherthandesignatypicalpavement sectionofanairport thatservesthe Boeing777aircraftwas selectedtobe modeled. ThemodelgeometryandpavementcrosssectionsfortheunderlyingPCCarearbitrar- ilyselectedasthestandardsectionofrunway4L-22RatO’HareAirport. Athree-dimensionalfiniteelementmeshwascreatedtorepresenttheairportpave- mentanditslayers.Also,atwo-dimensionalfiniteelementmeshwascreatedtorep- resentthegeometryofthecracksurface.Bymodelingthe3-Dpavementmeshandin- sertingthe2-Dcracksurfacemeshjustabovetheconcretejoint,areflectivecracking studyinasphaltoverlaywasperformedwithTheGeneralizedFiniteElementMethod describedintheprevioussection.ModesI,IIandIIIstressintensityfactorsarecom- putedalongthecrackfrontinordertoinvestigatethethree-dimensional,mixedmode crackdrivingmechanismsinatypicalairfieldpavement. 5.1. ModelGeometry ThepavementmodelencompasseshalfoftwoadjacentslabsandonePCCjointas illustratedbytheshadedregioninFigure5.Thesimulatedairfieldpavementiscom- posedofan20cmasphaltoverlay;23cmconcreteslabs,eachwithplandimensions of 6 m 5.7 m (PCC), and;an 28 cmcement treatedbase (CTB). A saw cutof 13 × mmwidthismodeledinthePCClayer. Thedimensionsofthecracksurfaceare2.54cmofhightand5cmofdepth.The curvedportionofthecrackhasaradiusof2.54cmandstartsandthemidpointofits depth.Figure6showsthegeometryofthecracksurface. 5.7 m 66mm Figure 5.Airfield pavement analyzed. The shaded square represents the portion of pavementmodeledinthisstudy.

Description:
centrations in the vicinity of joints and cracks in the underlying pavement (i) Enrichment for clouds ωα that do not intersect the crack surface. Three Dimensional Structural Mechanics Problems », Computers and Structures, vol.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.