Trends in Mathematics Shahla Molahajloo M. W. Wong Editors Analysis of Pseudo- Differential Operators Trends in Mathematics TrendsinMathematicsisaseriesdevotedtothepublicationofvolumesarisingfrom conferences and lecture series focusing on a particular topic from any area of mathematics.Itsaimistomakecurrentdevelopmentsavailabletothecommunityas rapidlyaspossiblewithoutcompromisetoqualityandtoarchivetheseforreference. ProposalsforvolumescanbesubmittedusingtheOnlineBookProjectSubmission Formatourwebsitewww.birkhauser-science.com. Materialsubmittedforpublicationmustbescreenedandpreparedasfollows: Allcontributionsshouldundergoareviewingprocesssimilartothatcarriedoutby journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, shouldberejected.Highqualitysurveypapers,however,arewelcome. We expecttheorganizerstodelivermanuscriptsina formthatisessentiallyready fordirectreproduction.AnyversionofTEX isacceptable,buttheentirecollection of files must be in one particular dialect of TEX and unified according to simple instructionsavailablefromBirkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essentialthatthefinalversionoftheentirematerialbesubmittednolaterthanone yearaftertheconference. Moreinformationaboutthisseriesathttp://www.springer.com/series/4961 Shahla Molahajloo • M. W. Wong Editors Analysis of Pseudo-Differential Operators Editors ShahlaMolahajloo M.W.Wong DepartmentofMathematics DepartmentofMathematicsandStatistics InstituteforAdvancedStudiesinBasic YorkUniversity Sciences Toronto,ON,Canada Zanjan,Iran ISSN2297-0215 ISSN2297-024X (electronic) TrendsinMathematics ISBN978-3-030-05167-9 ISBN978-3-030-05168-6 (eBook) https://doi.org/10.1007/978-3-030-05168-6 LibraryofCongressControlNumber:2019935501 MathematicsSubjectClassification(2010):47-XX,46-XX ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered companySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Sincethe2003ISAACCongressatYorkUniversity,ithasbecomeatraditionthata volumebasedonthespecialsessiononpseudo-differentialoperatorsbepublished. Itisnotonlyintendedtodocumenttheevent,butalsotoprovideguidanceforfuture researchonpseudo-differentialoperatorsandrelatedtopics. The11thISAACCongresswasheldatLinnæusUniversityinSwedenonAugust 14–18,2018.Thisvolume,asasequeltoitspredecessors,isbasedontalksgivenat thecongressandinvitedarticlesbyexpertsinthefield. There are ten chapters in this volume, titled “Analysis of Pseudo-Differential Operators.” The first four chapters address the functional analysis of pseudo- differential operators in a broad range of settings, from Z to Rn, to compact and Hausdorffgroups.Chapters5and6focusonoperatorsonLiegroupsandmanifolds with edge. The next two chapters discuss topics in probability, while the last two chapterscovertopicsindifferentialequations. It is hoped that these volumes on pseudo-differential operators published by Birkhäuser in Basel over a span of fifteen years have served and will continue to serve as useful reference guides for young mathematicians aspiring to explore newdirectionsin pseudo-differentialoperators.Itisalso ourfirm beliefthatthese volumes on pseudo-differential operators will continue to grow and develop in unforeseendirections,thankstotheinputofnewgenerationsofmathematicians. Zanjan,Iran ShahlaMolahajloo Toronto,ON,Canada M.W.Wong v Contents DiscreteAnalogsofWignerTransformsandWeylTransforms ............ 1 ShahlaMolahajlooandM.W.Wong Characterization and Spectral Invariance of Non-Smooth PseudodifferentialOperatorswithHölderContinuousCoefficients....... 21 HelmutAbelsandChristinePfeuffer FredholmnessandEllipticityof(cid:2)DOs onBs (Rn)andFs (Rn)........ 63 pq pq PedroT.P.Lopes CharacterizationsofSelf-Adjointness,Normality,Invertibility, and Unitarity of Pseudo-DifferentialOperatorson Compact andHausdorffGroups........................................................... 79 MajidJamalpourbirganiandM.W.Wong MultilinearCommutatorsinVariableLebesgueSpacesonStratified Groups............................................................................. 97 DongliLiu,JianTan,andJimanZhao VolterraOperatorswithAsymptoticsonManifoldswithEdge............. 121 M.HedayatMahmoudiandB.-W.Schulze Bismut’s Way of the Malliavin Calculus for Non-Markovian Semi-groups:AnIntroduction.................................................. 157 RémiLéandre OperatorTransformationofProbabilityDensities........................... 181 LeonCohen TheTime-FrequencyInterferenceTermsoftheGreen’sFunction fortheHarmonicOscillator..................................................... 215 LorenzoGalleani On the Solvability in the Sense of Sequences for Some Non-FredholmOperatorsRelatedtotheAnomalousDiffusion ............ 229 VitaliVougalterandVitalyVolpert vii Discrete Analogs of Wigner Transforms and Weyl Transforms ShahlaMolahajlooandM.W.Wong Abstract WefirstintroducethediscreteFourier–Wignertransformandthediscrete Wigner transform acting on functions in L2(Z). We prove that properties of the standardWignertransformof functionsin L2(Rn) such as the Moyalidentity,the inversionformula,time-frequencymarginalconditions,andtheresolutionformula hold for the Wigner transforms of functions in L2(Z). Using the discrete Wigner transform,wedefinethediscreteWeyltransformcorrespondingtoasuitablesymbol onZ×S1.Wegiveanecessaryandsufficientconditionfortheself-adjointnessof thediscreteWeyltransform.Moreover,wegiveanecessaryandsufficientcondition foradiscreteWeyltransformtobeaHilbert–Schmidtoperator.Thenweshowhow we can reconstruct the symbol from its correspondingWeyl transform. We prove thatthe productoftwo Weyltransformsis againa Weyltransformandan explicit formulaforthesymboloftheproductoftwoWeyltransformsisgiven.Thisresult givesanecessaryandsufficientconditionfortheWeyltransformtobeinthetrace class. Keywords Fourier–Wignertransform · Wignertransform · Weyltransform · Moyalidentity · Time-frequencymarginalconditions · Wignerinversion formula · Weylinversionformula · Kernels · Hilbert–Schmidtoperators · Trace classoperators · Twistedconvolution · Weylcalculus MathematicsSubjectClassification(2000) 47F05,47G30 This research has been supported by the Natural Sciences and Engineering Research Council ofCanadaunderDiscoveryGrant0008562. S.Molahajloo DepartmentofMathematics,InstituteforAdvancedStudiesinBasicSciences,Zanjan,Iran M.W.Wong((cid:2)) DepartmentofMathematicsandStatistics,YorkUniversity,Toronto,ON,Canada e-mail:[email protected] ©SpringerNatureSwitzerlandAG2019 1 S.Molahajloo,M.W.Wong(eds.),AnalysisofPseudo-DifferentialOperators, TrendsinMathematics,https://doi.org/10.1007/978-3-030-05168-6_1 2 S.MolahajlooandM.W.Wong 1 Introduction Toputthispaperinperspective,wefirstrecalltheWignertransformandtheWeyl transform mapping functions in L2(Rn) into functions on, respectively, Rn ×Rn andRn. Let σ ∈ L2(Rn × Rn). Then the Weyl transform W : L2(Rn) → L2(Rn) σ correspondingtothesymbolσ isdefinedby (cid:2) (cid:2) (Wσf,g)L2(Rn) =(2π)−n/2 σ(x,ξ)W(f,g)(x,ξ)dxdξ Rn Rn for all f and g in L2(Rn), where W(f,g) is the Wigner transform of f and g definedby (cid:2) (cid:3) (cid:4) (cid:3) (cid:4) p p W(f,g)(x,ξ) =(2π)−n/2 e−iξ·pf x+ g x− dp, x,ξ ∈Rn. Rn 2 2 Closely related to the Wigner transform W(f,g) of f and g in L2(Rn) is the Fourier–WignertransformV(f,g)givenby (cid:2) (cid:3) (cid:4) (cid:3) (cid:4) p p V(f,g)(q,p)=(2π)−n/2 eiq·yf y+ g y− dy, q,p∈Rn. Rn 2 2 Weyl transforms and Wigner transforms on Rn have been extensively studied in [5,13]amongothers. WeyltransformsongroupssuchastheHeisenberggroup,theupperhalfplane, and the Poincaré unit disk are investigated in [8, 10–12]. Closely related to Weyl transformsare pseudo-differentialoperatorson groups.See, for instance, [4, 7,9, 15]. The strategy that we use to developthe Weyl transform on Z is to have a look atthecase ofRn,wherethesymbolσ isa functiononRn ×Rn.Recentworksin pseudo-differentialoperatorsandWeyltransformsontopologicalgroupsGsuggest thatthecorrectphasespacetoworkinisG×G(cid:5),whereG(cid:5)isthedualgroupofG. ThatthedualgroupofRn isthesameasRn isthereasonwhythephasespaceon whichsymbolsaredefinedisRn×Rn. In the case of the group Z in this paper, the dual group is the unit circle S1 centeredattheoriginandthephasespaceG×G(cid:5)isthenZ×S1. For1≤p<∞,thesetofallmeasurablefunctionsF onZsuchthat (cid:6) (cid:6)F(cid:6)p = |F(n)|p <∞ Lp(Z) n∈Z DiscreteAnalogsofWignerTransformsandWeylTransforms 3 isdenotedbyLp(Z).WedefineLp(S1)tobethesetofallmeasurablefunctionsf ontheunitcircleS1withcenterattheoriginforwhich (cid:2) 1 π (cid:6)f(cid:6)p = |f(θ)|pdθ <∞. Lp(S1) 2π −π WedefinetheFouriertransformFZF ofF ∈L1(Z)tobethefunctiononS1by (cid:6) (FZF)(θ)= einθF(n), θ ∈[−π,π]. n∈Z Iff isasuitablefunctiononS1,thenwedefinetheFouriertransformFS1f off to bethefunctiononZby (cid:2) (cid:7) (cid:8) 1 π FS1f (n)= e−inθf(θ)dθ, n∈Z. 2π −π NotethatFZ :L2(Z)→L2(S1)isasurjectiveisomorphism.Infact, F =F−1 =F∗ Z S1 S1 and (cid:6)FZF(cid:6)L2(S1) =(cid:6)F(cid:6)L2(Z), F ∈L2(Z). Let H be a suitable function on S1 × Z. Then we define the Fourier transform FS1×ZH ofH tobethefunctiononZ×S1by (cid:2) (cid:7) (cid:8) 1 π (cid:6) FS1×ZH (m,θ)= e−imφ+inθH(φ,n)dφ, (m,θ)∈Z×S1. 2π −π n∈Z Similarly,forallsuitable functionsK onZ×S1, we define theFouriertransform FZ×S1K ofK tobethefunctiononS1×Zby (cid:2) 1 π (cid:6) (FZ×S1K)(θ,m)= e−imφ+inθK(n,φ)dφ, (θ,m)∈S1×Z. 2π −π n∈Z For1≤p <∞,wedefineLp(Z×S1)tobethespaceofallmeasurablefunctions honZ×S1 suchthat (cid:2) 1 (cid:6) π (cid:6)h(cid:6)p = |h(n,θ)|pdθ <∞. Lp(Z×S1) 2π n∈Z −π