MasterThesis ElectricalEngineering Thesisno: MEE-2008:25 July2008 Analysis of MIG Welding with Aim on Quality Irina Gertsovich Niklas Svanberg DepartmentofSignalProcessing ArevaUddcombEngineering BlekingeInstituteofTechnology PortChapman Box520 37121Karlskrona SE-37225Ronneby Sweden ThisthesisissubmittedtotheSchoolofEngineeringatBlekingeInstituteofTechnology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. Thethesisisequivalentto2x20weeksoffulltimestudies. ContactInformation: Authors: IrinaGertsovich Address: Mandelblomsvägen13B,37252Kallinge,Sweden E-mail: [email protected] NiklasSvanberg Address: Ölandsgatan8,37133Karlskrona,Sweden E-mail: [email protected] Externaladvisor: NilsBjersten UddcombEngineeringAB Universityadvisorandexaminer: MikaelNilsson DepartmentofSignalProcessing,BTH Universityadvisors: JosefStrömBartunek DepartmentofSignalProcessing,BTH DepartmentofSignalProcessing Internet: www.bth.se/tek BlekingeInstituteofTechnology Phone : +46457385000 Box520 Fax : +4645727125 SE-37225Ronneby Sweden ABSTRACT Since1987UddcombEngineeringhasrepairedpulpsby their own developed overlay welding method even called Uddcombmethod. Currentlyeachweldingmachineisop- eratedbytwopersons. ToincreaseUddcombEngineering competitiveness the reduced number of operators is de- sired. An installation of a monitoring system which can aidhumansintheweldingqualitycontrolalsohelpstoim- provecompany’sposition. Afuturegoalwouldbetomake thismonitoringsystemautomaticwithoutahumanopera- torintheloop. In this thesis, arc voltage, weld current and audio sig- nalswerecollectedandanalyzedwithaimonfindingalgo- rithms to monitor the quality of the welding process. The useofstatisticstoolsisthebasisfordetectingvariationsin thevoltageandcurrentdata, associatedwithweldingpro- cess. It has been shown that voltage signal can be used as a part of the welding quality control. The audio sig- nalfromweldingatlowfrequenciesvarieswiththespeed of the process. The signal can also be incorporated in the monitoringoftheprocess. The use of filters, growing sums and statistics are key elementsinthealgorithmspresentedinthisreport. Keywords: MIG welding, Arc Voltage, Weld Cur- rent,Audio,SignalProcessing. Contents Contents 5 List of Figures 7 List of Tables 13 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Welding 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Equipment in MIG/MAG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Power Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Welding Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 Bobbin and wire Feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Extra material for welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 The Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 UE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Theory of Tools 9 3.1 Statistic Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Periodograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 The Experimental Setup 11 4.1 The Welding Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.1 Microphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.3 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.4 Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Other Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.1 Computers and DAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.2 Workpiece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 Visual Welding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 6 CONTENTS 5 Analysis of Voltage and Current 21 5.1 Stationarity & Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Method 1: Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Method 2: Recursive Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5 Method: Recursive Sum Combined with Filter Method . . . . . . . . . . . . . . . 58 5.5.1 Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Analysis of Sound 69 6.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Method 1: Recursive Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3 Dependency between Speed and Quality . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4 M14: Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7 Conclusions and future work 89 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Bibliography 91 A Figures from Chapter 5 93 A.1 Section 5.1: Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.2 Section 5.1: Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.3 Section 5.3: Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.4 Section 5.3: Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 A.5 Section 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 B Figures from Chapter 6 115 B.1 Method 1: Recursive Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 List of Figures 2.1 Overview of MIG/MAG welding equipment. 1) power source, 2) welding gun, 3) electrode bobbin, 4) wire feeder, 5) controller, 6) water supply, 7) gas supply, and 8) workpiece.. . 4 2.2 Characteristics of the power source; a) dropping b) straight c) lightly dropping. . . . . . 4 2.3 The welding gun. 1) the gas hose, 2) the contact tube, and 3) the electrode wire. . . . . 5 2.4 The end tip of the welding gun [1, p40]. 1) electrode wire, 2) contact piece, 3) gas(es), 4) drops of electrode wire, 5) area of gases, and 6) the arc area. . . . . . . . . . . . . . 5 2.5 Schematic of the voltage drop in the arc [1]. L denotes the electrode stick-out from the e contact tube, L denotes the arc length, U , U and U denote the anode, column and a a co c cathode voltage drop respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.6 Schematic of the welding system’s movements. . . . . . . . . . . . . . . . . . . . . . . 8 4.1 Schematic overview of the experimental setup for measuring weld voltage, current, sound and video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Pulses generated by the welding power source. . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Schematic of sound measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Schematic of current measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Schematic of the voltage splitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 Schematic of video monitoring and recording. . . . . . . . . . . . . . . . . . . . . . . 14 4.7 Picture of the fingercamera. The units on the ruler are centimeters. . . . . . . . . . . . 15 4.8 (a) Overview of the workpiece (b) Description of which surfaces the workpiece are divided into and also how long they are. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.9 Graphical User Interface (GUI) used during the data collection. . . . . . . . . . . . . . 17 4.10 Visualweldingresultsfrommeasurements4-9. Theuppernumbersindicatewithelectrode wire type used and the lower numbers are the wire speed [m/min]. . . . . . . . . . . . . 19 4.11 Visual welding results from measurements 1-3 and 10-12. The upper numbers indicate with electrode wire type used and the lower numbers are the wire speed [m/min]. . . . . . 19 4.12 Visual welding results from measurements 13-14. Measurement setup: electrode wire 29.9 with speed 9 m/min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 M1 in time domain, where (b) is only a part of the total signal in (a). . . . . . . . . . . 21 5.2 M11 in time domain, where (b) is only a part of the total signal in (a). . . . . . . . . . 22 5.3 M1statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 M5statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . . . . . 23 5.5 Block statistics test for stationarity with 4410 samples/block on surface 1(60 seconds) in M1; (a) Mean (b) Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.6 Histogram of (a) M1 (b) M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 8 LIST OF FIGURES 5.7 M1statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.8 M5statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . . . . . 25 5.9 Block statistics test for stationarity with 4410 samples/block on surface 1(60 seconds) in M1; (a) Mean (b) Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.10 Histogram of (a) M1 (b) M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.11 M1; (a) shows the current data with the rapidly changing characteristic when switching row in welding process; (b) shows the voltage and it’s transients. . . . . . . . . . . . . . 27 5.12 M1; (a) shows the current data with the rapidly changing characteristic when switching row in welding process; (b) shows the voltage and it’s transients. . . . . . . . . . . . . . 28 5.13 M1; (a) shows the current data with the rapidly changing characteristic when switching row in welding process; (b) shows the voltage and it’s transients. . . . . . . . . . . . . . 28 5.14 Spectrogram of M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.15 Spectrogram of M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.16 Spectrogram of M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.17 Spectrogram of M10. Notice the change of surfaces at 1500 and 2500 blocks.. . . . . . . 31 5.18 Spectrogram of M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.19 Spectrogram of M12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.20 Designed highpass filter for voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.21 M1statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.22 M2statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.23 M3statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.24 M10 statistics results of filtered voltage signal using block length 2048; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.25 M11 statistics results of filtered voltage signal using block length 2048; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.26 M12 statistics results of filtered voltage signal using block length 2048; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.27 Spectrogram of M1 over whole spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.28 Spectrogram of M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.29 Spectrogram of M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.30 Spectrogram of M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.31 Spectrogram of M10. Notice the change of surfaces at 600 and 1000 blocks. . . . . . . . 41 5.32 Spectrogram of M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.33 Spectrogram of M12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.34 Designed lowpass filter for current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.35 M1statisticsresultsoffilteredcurrentsignalusingblocklength512; (a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.36 M2statisticsresultsoffilteredcurrentsignalusingblocklength512; (a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.37 M3statisticsresultsoffilteredcurrentsignalusingblocklength512; (a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.38 M10 statistics results of filtered current signal using block length 512; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LIST OF FIGURES 9 5.39 M11 statistics results of filtered current signal using block length 512; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.40 M12 statistics results of filtered current signal using block length 512; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.41 Recursive sum method for voltage in M1 using block length 2048; (a) Variance (b) Skewness 50 5.42 RecursivesummethodforvoltageinM11usingblocklength2048; (a)Variance(b)Skewness 51 5.43 Recursive sum method for voltage in M5 using block length 2048; (a) Variance (b) Skewness 51 5.44 Recursive sum method for voltage in M8 using block length 2048; (a) Variance (b) Skewness 52 5.45 RecursivesummethodforcurrentinM1usingblocklength2048; (a)Variance(b)Skewness 52 5.46 RecursivesummethodforcurrentinM11usingblocklength2048;(a)Variance(b)Skewness 53 5.47 RecursivesummethodforcurrentinM5usingblocklength2048; (a)Variance(b)Skewness 53 5.48 RecursivesummethodforcurrentinM8usingblocklength2048; (a)Variance(b)Skewness 54 5.49 Recursive sum method with forgetting factor γ =0.99, voltage in M1 using block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . 55 5.50 Recursive sum method with forgetting factor γ =0.99, voltage in M5 using block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . 56 5.51 Recursive sum method with forgetting factor γ =0.99, voltage in M4 using block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . 57 5.52 M1 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 59 5.53 M2 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 60 5.54 M3 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 61 5.55 M10 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 62 5.56 M11 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 63 5.57 M12 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 64 5.58 M1 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.59 M1 voltage signal, decimated by 2, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance. . . . . . . . . . . . . . . . . . . 66 5.60 M1 voltage signal, decimated by 3, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance. . . . . . . . . . . . . . . . . . . 66 6.1 Sampled audio signal; (a) Clipped signal from PC-1 soundcard from M1 (b) Not clipped signal using DAQ in M14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Spectrogram of M3. At ≈1500 blocks the welding process proceeds on the rusty surface. . 70 6.3 Spectrogram of M12. At ≈1500 blocks the welding process proceeds on the rusty surface. 71 6.4 Designed highpass filter for sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.5 Highpass filtered sound signal in time domain; (a) M1 (b) M11 . . . . . . . . . . . . . 72 6.6 Highpass filtered M1 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.7 Highpass filtered M2 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10 LIST OF FIGURES 6.8 Highpass filtered M3 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 and ≈2500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.9 Highpass filtered M10 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.10 Highpass filtered M11 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.11 Highpass filtered M12 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.12 Highpass filtered M13 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.13 Lowpass filter with pass band 1 Hz and transition band 90 Hz. . . . . . . . . . . . . . . 77 6.14 Spectrogram of the audio record for first surface in M12. Zoomed at frequency range 0 - 500 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.15 Spectrogram of second surface in M2. The power of the signal is around -60 dB for the most of the blocks. Few blocks have power over -40 dB. . . . . . . . . . . . . . . . . . 78 6.16 Spectrogram of second surface in M1. The signal has higher number of blocks with power above -40 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.17 Spectrogram of second surface in M3. The signal consists of blocks with power above -40 dB mostly. Only few blocks have power below -40dB. . . . . . . . . . . . . . . . . . . . 79 6.18 Spectrogram of third surface in M7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.19 Spectrogram of third surface in M8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.20 Spectrogram of third surface in M9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.21 Statistical data example for M2, surface 2 only, calculated from signal power; (a) Mean (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.22 Statistical data example for M2, surface 2 only, smoothed signal power; (a) Mean (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.23 Mean of sound power for each speed group; (a) Original (b) Zoomed. . . . . . . . . . . 84 6.24 Mean value of averaged variance for each speed group; (a) Original (b) Zoomed. . . . . . 85 6.25 Power Spectral Density (PSD) using Welch periodogram method on M1. . . . . . . . . . 86 6.26 Power Spectral Density (PSD) using Welch periodogram method on M14. . . . . . . . . 87 A.1 M8statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.2 M11 statistics measures of different block sizes; (a) Mean (b) Variance; Solid line is surface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . 94 A.3 M8statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.4 M11 statistics measures of different block sizes; (a) Mean (b) Variance; Solid line is surface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . 95 A.5 M4statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.6 M5statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Description: