ebook img

Analysis of MIG Welding with Aim on Quality PDF

132 Pages·2008·9.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of MIG Welding with Aim on Quality

MasterThesis ElectricalEngineering Thesisno: MEE-2008:25 July2008 Analysis of MIG Welding with Aim on Quality Irina Gertsovich Niklas Svanberg DepartmentofSignalProcessing ArevaUddcombEngineering BlekingeInstituteofTechnology PortChapman Box520 37121Karlskrona SE-37225Ronneby Sweden ThisthesisissubmittedtotheSchoolofEngineeringatBlekingeInstituteofTechnology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. Thethesisisequivalentto2x20weeksoffulltimestudies. ContactInformation: Authors: IrinaGertsovich Address: Mandelblomsvägen13B,37252Kallinge,Sweden E-mail: [email protected] NiklasSvanberg Address: Ölandsgatan8,37133Karlskrona,Sweden E-mail: [email protected] Externaladvisor: NilsBjersten UddcombEngineeringAB Universityadvisorandexaminer: MikaelNilsson DepartmentofSignalProcessing,BTH Universityadvisors: JosefStrömBartunek DepartmentofSignalProcessing,BTH DepartmentofSignalProcessing Internet: www.bth.se/tek BlekingeInstituteofTechnology Phone : +46457385000 Box520 Fax : +4645727125 SE-37225Ronneby Sweden ABSTRACT Since1987UddcombEngineeringhasrepairedpulpsby their own developed overlay welding method even called Uddcombmethod. Currentlyeachweldingmachineisop- eratedbytwopersons. ToincreaseUddcombEngineering competitiveness the reduced number of operators is de- sired. An installation of a monitoring system which can aidhumansintheweldingqualitycontrolalsohelpstoim- provecompany’sposition. Afuturegoalwouldbetomake thismonitoringsystemautomaticwithoutahumanopera- torintheloop. In this thesis, arc voltage, weld current and audio sig- nalswerecollectedandanalyzedwithaimonfindingalgo- rithms to monitor the quality of the welding process. The useofstatisticstoolsisthebasisfordetectingvariationsin thevoltageandcurrentdata, associatedwithweldingpro- cess. It has been shown that voltage signal can be used as a part of the welding quality control. The audio sig- nalfromweldingatlowfrequenciesvarieswiththespeed of the process. The signal can also be incorporated in the monitoringoftheprocess. The use of filters, growing sums and statistics are key elementsinthealgorithmspresentedinthisreport. Keywords: MIG welding, Arc Voltage, Weld Cur- rent,Audio,SignalProcessing. Contents Contents 5 List of Figures 7 List of Tables 13 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Welding 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Equipment in MIG/MAG Welding . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Power Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Welding Gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 Bobbin and wire Feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Extra material for welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 The Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.5 UE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Theory of Tools 9 3.1 Statistic Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Periodograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 The Experimental Setup 11 4.1 The Welding Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.1 Microphone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.3 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.4 Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.3 Other Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.1 Computers and DAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3.2 Workpiece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.5 Visual Welding Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 6 CONTENTS 5 Analysis of Voltage and Current 21 5.1 Stationarity & Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3 Method 1: Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.1 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.2 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Method 2: Recursive Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5 Method: Recursive Sum Combined with Filter Method . . . . . . . . . . . . . . . 58 5.5.1 Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Analysis of Sound 69 6.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Method 1: Recursive Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3 Dependency between Speed and Quality . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4 M14: Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7 Conclusions and future work 89 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Bibliography 91 A Figures from Chapter 5 93 A.1 Section 5.1: Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.2 Section 5.1: Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.3 Section 5.3: Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.4 Section 5.3: Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 A.5 Section 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 B Figures from Chapter 6 115 B.1 Method 1: Recursive Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 List of Figures 2.1 Overview of MIG/MAG welding equipment. 1) power source, 2) welding gun, 3) electrode bobbin, 4) wire feeder, 5) controller, 6) water supply, 7) gas supply, and 8) workpiece.. . 4 2.2 Characteristics of the power source; a) dropping b) straight c) lightly dropping. . . . . . 4 2.3 The welding gun. 1) the gas hose, 2) the contact tube, and 3) the electrode wire. . . . . 5 2.4 The end tip of the welding gun [1, p40]. 1) electrode wire, 2) contact piece, 3) gas(es), 4) drops of electrode wire, 5) area of gases, and 6) the arc area. . . . . . . . . . . . . . 5 2.5 Schematic of the voltage drop in the arc [1]. L denotes the electrode stick-out from the e contact tube, L denotes the arc length, U , U and U denote the anode, column and a a co c cathode voltage drop respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.6 Schematic of the welding system’s movements. . . . . . . . . . . . . . . . . . . . . . . 8 4.1 Schematic overview of the experimental setup for measuring weld voltage, current, sound and video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Pulses generated by the welding power source. . . . . . . . . . . . . . . . . . . . . . . 12 4.3 Schematic of sound measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Schematic of current measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.5 Schematic of the voltage splitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.6 Schematic of video monitoring and recording. . . . . . . . . . . . . . . . . . . . . . . 14 4.7 Picture of the fingercamera. The units on the ruler are centimeters. . . . . . . . . . . . 15 4.8 (a) Overview of the workpiece (b) Description of which surfaces the workpiece are divided into and also how long they are. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.9 Graphical User Interface (GUI) used during the data collection. . . . . . . . . . . . . . 17 4.10 Visualweldingresultsfrommeasurements4-9. Theuppernumbersindicatewithelectrode wire type used and the lower numbers are the wire speed [m/min]. . . . . . . . . . . . . 19 4.11 Visual welding results from measurements 1-3 and 10-12. The upper numbers indicate with electrode wire type used and the lower numbers are the wire speed [m/min]. . . . . . 19 4.12 Visual welding results from measurements 13-14. Measurement setup: electrode wire 29.9 with speed 9 m/min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 M1 in time domain, where (b) is only a part of the total signal in (a). . . . . . . . . . . 21 5.2 M11 in time domain, where (b) is only a part of the total signal in (a). . . . . . . . . . 22 5.3 M1statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 M5statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . . . . . 23 5.5 Block statistics test for stationarity with 4410 samples/block on surface 1(60 seconds) in M1; (a) Mean (b) Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.6 Histogram of (a) M1 (b) M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 8 LIST OF FIGURES 5.7 M1statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.8 M5statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . . . . . 25 5.9 Block statistics test for stationarity with 4410 samples/block on surface 1(60 seconds) in M1; (a) Mean (b) Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.10 Histogram of (a) M1 (b) M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.11 M1; (a) shows the current data with the rapidly changing characteristic when switching row in welding process; (b) shows the voltage and it’s transients. . . . . . . . . . . . . . 27 5.12 M1; (a) shows the current data with the rapidly changing characteristic when switching row in welding process; (b) shows the voltage and it’s transients. . . . . . . . . . . . . . 28 5.13 M1; (a) shows the current data with the rapidly changing characteristic when switching row in welding process; (b) shows the voltage and it’s transients. . . . . . . . . . . . . . 28 5.14 Spectrogram of M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.15 Spectrogram of M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.16 Spectrogram of M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.17 Spectrogram of M10. Notice the change of surfaces at 1500 and 2500 blocks.. . . . . . . 31 5.18 Spectrogram of M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.19 Spectrogram of M12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.20 Designed highpass filter for voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.21 M1statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.22 M2statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.23 M3statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.24 M10 statistics results of filtered voltage signal using block length 2048; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.25 M11 statistics results of filtered voltage signal using block length 2048; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.26 M12 statistics results of filtered voltage signal using block length 2048; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.27 Spectrogram of M1 over whole spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.28 Spectrogram of M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.29 Spectrogram of M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.30 Spectrogram of M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.31 Spectrogram of M10. Notice the change of surfaces at 600 and 1000 blocks. . . . . . . . 41 5.32 Spectrogram of M11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.33 Spectrogram of M12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.34 Designed lowpass filter for current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.35 M1statisticsresultsoffilteredcurrentsignalusingblocklength512; (a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.36 M2statisticsresultsoffilteredcurrentsignalusingblocklength512; (a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.37 M3statisticsresultsoffilteredcurrentsignalusingblocklength512; (a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.38 M10 statistics results of filtered current signal using block length 512; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LIST OF FIGURES 9 5.39 M11 statistics results of filtered current signal using block length 512; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.40 M12 statistics results of filtered current signal using block length 512; (a) IQR (b) Vari- ance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.41 Recursive sum method for voltage in M1 using block length 2048; (a) Variance (b) Skewness 50 5.42 RecursivesummethodforvoltageinM11usingblocklength2048; (a)Variance(b)Skewness 51 5.43 Recursive sum method for voltage in M5 using block length 2048; (a) Variance (b) Skewness 51 5.44 Recursive sum method for voltage in M8 using block length 2048; (a) Variance (b) Skewness 52 5.45 RecursivesummethodforcurrentinM1usingblocklength2048; (a)Variance(b)Skewness 52 5.46 RecursivesummethodforcurrentinM11usingblocklength2048;(a)Variance(b)Skewness 53 5.47 RecursivesummethodforcurrentinM5usingblocklength2048; (a)Variance(b)Skewness 53 5.48 RecursivesummethodforcurrentinM8usingblocklength2048; (a)Variance(b)Skewness 54 5.49 Recursive sum method with forgetting factor γ =0.99, voltage in M1 using block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . 55 5.50 Recursive sum method with forgetting factor γ =0.99, voltage in M5 using block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . 56 5.51 Recursive sum method with forgetting factor γ =0.99, voltage in M4 using block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . 57 5.52 M1 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 59 5.53 M2 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 60 5.54 M3 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 61 5.55 M10 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 62 5.56 M11 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 63 5.57 M12 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . 64 5.58 M1 voltage signal, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.59 M1 voltage signal, decimated by 2, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance. . . . . . . . . . . . . . . . . . . 66 5.60 M1 voltage signal, decimated by 3, highpass filtered, using recursive sum method with γ=0.99 and block length 2048; (a) IQR (b) Variance. . . . . . . . . . . . . . . . . . . 66 6.1 Sampled audio signal; (a) Clipped signal from PC-1 soundcard from M1 (b) Not clipped signal using DAQ in M14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.2 Spectrogram of M3. At ≈1500 blocks the welding process proceeds on the rusty surface. . 70 6.3 Spectrogram of M12. At ≈1500 blocks the welding process proceeds on the rusty surface. 71 6.4 Designed highpass filter for sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.5 Highpass filtered sound signal in time domain; (a) M1 (b) M11 . . . . . . . . . . . . . 72 6.6 Highpass filtered M1 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.7 Highpass filtered M2 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 10 LIST OF FIGURES 6.8 Highpass filtered M3 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 and ≈2500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.9 Highpass filtered M10 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.10 Highpass filtered M11 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.11 Highpass filtered M12 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.12 Highpass filtered M13 sound signal, using recursive sum method with γ = 0.99 and block length 4096; (a) Variance (b) Kurtosis. At ≈1500 blocks the welding process proceeds on the rusty surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.13 Lowpass filter with pass band 1 Hz and transition band 90 Hz. . . . . . . . . . . . . . . 77 6.14 Spectrogram of the audio record for first surface in M12. Zoomed at frequency range 0 - 500 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.15 Spectrogram of second surface in M2. The power of the signal is around -60 dB for the most of the blocks. Few blocks have power over -40 dB. . . . . . . . . . . . . . . . . . 78 6.16 Spectrogram of second surface in M1. The signal has higher number of blocks with power above -40 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.17 Spectrogram of second surface in M3. The signal consists of blocks with power above -40 dB mostly. Only few blocks have power below -40dB. . . . . . . . . . . . . . . . . . . . 79 6.18 Spectrogram of third surface in M7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.19 Spectrogram of third surface in M8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.20 Spectrogram of third surface in M9. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.21 Statistical data example for M2, surface 2 only, calculated from signal power; (a) Mean (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.22 Statistical data example for M2, surface 2 only, smoothed signal power; (a) Mean (b) Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.23 Mean of sound power for each speed group; (a) Original (b) Zoomed. . . . . . . . . . . 84 6.24 Mean value of averaged variance for each speed group; (a) Original (b) Zoomed. . . . . . 85 6.25 Power Spectral Density (PSD) using Welch periodogram method on M1. . . . . . . . . . 86 6.26 Power Spectral Density (PSD) using Welch periodogram method on M14. . . . . . . . . 87 A.1 M8statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.2 M11 statistics measures of different block sizes; (a) Mean (b) Variance; Solid line is surface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . 94 A.3 M8statisticsmeasuresofdifferentblocksizes; (a)Mean(b)Variance; Solidlineissurface 1 and dashed line is surface 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 A.4 M11 statistics measures of different block sizes; (a) Mean (b) Variance; Solid line is surface 3, dashed line is surface 4 and dashdotted line is surface 5. . . . . . . . . . . . 95 A.5 M4statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.6 M5statisticsresultsoffilteredvoltagesignalusingblocklength2048;(a)IQR(b)Variance (c) Skewness (d) Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Description:
bobbin, 4) wire feeder, 5) controller, 6) water supply, 7) gas supply, and 8) workpiece . 4 Carbon dioxide is ordinary inexpensive gas which has good penetration and good ability to withstand . Ohms law is a relationship between three variables used the electrical world, and is defined as. U = R·
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.