Universität Stuttgart Geodätisches Institut Analysis of Geodetic Time Series Using Allan Variances Studienarbeit im Studiengang Geodäsie und Geoinformatik an der Universität Stuttgart Thomas Friederichs Stuttgart, November 2010 Betreuer: Prof. Dr.-Ing. NicoSneeuw UniversitätStuttgart Erklärung der Urheberschaft IcherklärehiermitanEidesstatt, dassichdievorliegendeArbeitohneHilfeDritterundohne BenutzungandereralsderangegebenenHilfsmittelangefertigthabe;dieausfremdenQuellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form in keiner anderen Prüfungsbehörde vorgelegt undauchnochnichtveröffentlicht. Ort,Datum Unterschrift III Summary The Allan variance is a statistical measure, developed in the 1960’s by the American physicist David W. Allan. With its aid, data series measured by devices like oscillators or gyroscopes can be analyzed with regard to their stability. In contrast to the Allan variance, the standard varianceasameasureoftotalsignalpower,isnotabletocharacterizesignalstability. ThereexistfurtherdevelopmentsoftheAllanvariance. Thisstudentresearchprojectconsiders mainlynon-overlapping,overlappingandmodifiedAllanvariances. The result of an Allan variance computation is the so-called σ-τ-diagram. This diagram pro- vides information about the stability and beyond, it allows identification of various random processesthatexistintheseriesofmeasurement. TheAllanvariancemaybecomputeddirectlyinthetimedomainaswellasviathefrequency domainusingthepowerspectraldensityofthetimeseriesandatransferfunction. AdomainconversionbetweentheAllanvarianceandthepowerspectraldensityisonlyunidi- rectional. Moreprecisely, onecancomputetheAllanvariancebymeansofthepowerspectral density,butnotviceversa. This student research project takes up the challenge of applying the concept of the Allan variance to geodetic time series (pole coordinates as part of the Earth orientation parameters, GPS measured coordinates of one position, Scintrex CG-5 gravimeter data and GOCE gravity gradients,inadditiontooscillatorfrequencies). TheAllanvarianceturnsouttobeareasonablestatisticalmeasureforanalysisofgeodetictime series. The Allan variance, or better the Allan deviation, especially in an entire diagram, can be considered as a form of spectral analysis. Having said this, it is possible to consider the averagingintervalτ astheinvertedfrequency. V VII Contents 1 Introduction 1 2 TimeDomainStabilityAnalysis 3 2.1 TimingSignalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 StandardVariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 AllanVariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.3 OverlappingAllanVariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.4 ModifiedAllanVariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.5 Overviewofdevelopedvariances . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 TheresultofanAllanvariancecomputation . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 TheSigma-Tau-Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 ComparisonofthreedifferentAllanvarianceplotsonthebasisofashow- casedataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Computationtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4 AccuracyversusStability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 FrequencyDomainStabilityAnalysis 19 3.1 NoiseSpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 SpectralAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 DomainConversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Applicationtogeodetictimeseries 25 4.1 Oscillatorfrequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 EarthOrientationParameters: Polecoordinates . . . . . . . . . . . . . . . . . . . . 29 4.2.1 x-componentofpolecoordinates . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 y-componentofpolecoordinates . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 GPSmeasuredcoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.1 AbsolutevaluesofcomplexGPSpositiondata . . . . . . . . . . . . . . . . 35 4.3.2 ArgumentsofcomplexGPSpositiondata . . . . . . . . . . . . . . . . . . . 36 4.4 ScintrexCG-5Gravimeterdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.5 GOCEgravitygradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.5.1 GOCEgravitygradients T , T and T . . . . . . . . . . . . . . . . . . . 40 xx yy zz 4.5.2 GOCEgravitygradients T . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 xy 5 Discussion 49 A Appendix XV B Appendix XVII VIII C Appendix XXI C.1 Calculation of the sigma-tau diagrams for non-overlapping, overlapping and modifiedAllandeviation(Time-Domain-Based) . . . . . . . . . . . . . . . . . . . XXI C.2 Calculation of the sigma-tau diagrams for overlapping and modified Allan de- viation(Frequency-Domain-Based) . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI C.3 Mainprogramsfortheanalysisofgeodetictimeseries . . . . . . . . . . . . . . . . XXI C.4 Additionalhelperfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXII IX List of Figures 1.1 Example for random processes, for which the standard deviation does not con- verge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Samplingtime,observationtimeanddeadtime. . . . . . . . . . . . . . . . . . . . 4 2.2 Simulatedtimedeviation x(t)andfractionalfrequencyploty(t). . . . . . . . . . 7 2.3 Comparisonofnon-overlappingandoverlappingsampling . . . . . . . . . . . . 8 2.4 DerivationmodelfortheoverlappingAllanvariance . . . . . . . . . . . . . . . . 9 2.5 Frequencyvaluesofanoscillatorinone-secondcycles . . . . . . . . . . . . . . . . 12 2.6 Frequencyvaluesofanoscillatorintwo-secondcycles . . . . . . . . . . . . . . . . 12 2.7 Frequencydataofanoscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.8 σ-τ diagramwithnon-overlappingAllandeviationonthebasisofoscillatordata 15 2.9 σ-τ diagramwithoverlappingAllandeviationonthebasisofoscillatordata . . . 15 2.10 σ-τ diagramwithmodifiedAllandeviationonthebasisofoscillatordata . . . . 16 2.11 Accuracyandstabilityarenotthesame! . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1 Noisetypeandtimeseriesforasetofsimulatedphasedata. . . . . . . . . . . . . 20 3.2 Slopesofcommonpowerlawnoiseprocesses . . . . . . . . . . . . . . . . . . . . . 21 3.3 TransferfunctionoftheAllan(two-sample)timedomainstability . . . . . . . . . 23 3.4 Overviewofdomainconversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1 Frequencydataofa10MHzreferenceofanAgilentN9020Aspectrumanalyzer . 26 4.2 σ-τ-diagramwithAllandeviationsforanalyzedoscillator . . . . . . . . . . . . . 27 4.3 σ-τ-diagramwithmodifiedAllandeviationsforanalyzedoscillator . . . . . . . . 28 4.4 Polarmotionfrom1990upto2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 x-coordinateofpolefrom1990upto2007 . . . . . . . . . . . . . . . . . . . . . . . 30 4.6 σ-τ-diagramwithAllandeviationsforx-coordinatesofpole . . . . . . . . . . . . 30 4.7 σ-τ-diagramwithmodifiedAllandeviationsforx-coordinatesofpole . . . . . . 31 4.8 y-coordinateofpolefrom1990upto2007 . . . . . . . . . . . . . . . . . . . . . . . 32 4.9 σ-τ-diagramwithAllandeviationsfory-coordinatesofpole . . . . . . . . . . . . 32 4.10 σ-τ-diagramwithmodifiedAllandeviationsfory-coordinatesofpole . . . . . . 33 4.11 ScatterplotofGPSmeasuredpositiondata . . . . . . . . . . . . . . . . . . . . . . 34 4.12 Acomplexnumberinthecomplexplane . . . . . . . . . . . . . . . . . . . . . . . 34 4.13 TimeserieswithabsolutevaluesofcomplexGPSpositiondata . . . . . . . . . . . 35 4.14 σ-τ-diagramsforabsolutevalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.15 TimeserieswithargumentsofcomplexGPSpositiondata . . . . . . . . . . . . . 36 4.16 σ-τ-diagramsforarguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.17 Preprocessedgravimeterdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.18 σ-τ-diagramwithAllandeviationsforgravimeterdata . . . . . . . . . . . . . . . 38 4.19 σ-τ-diagramwithmodifiedAllandeviationsforgravimeterdata . . . . . . . . . 38 4.20 DifferenceinADEVcomputationbetweentrendreducedandtrendaffecteddata 39 X 4.21 GravitygradientsinalongtrackdirectionandanappropriateFourierseries . . . 41 4.22 Reducedgravitygradientsinalongtrackdirection . . . . . . . . . . . . . . . . . . 41 4.23 OriginalandreducedgravitygradientsofthethreemaindiagonaltermsT ,T xx yy and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 zz 4.24 σ-τ-diagramsofthethreemaindiagonalterms T , T and T . . . . . . . . . . 44 xx yy zz 4.25 OriginalgravitygradientsofthethreemaindiagonaltermsT ,T ,T andtheir xx yy zz correspondingtime-domainbasedsigma-tauplots . . . . . . . . . . . . . . . . . . 45 4.26 OriginalgravitygradientsofthethreemaindiagonaltermsT ,T ,T andtheir xx yy zz correspondingsigma-tauplotsviaPSDandtransferfunction . . . . . . . . . . . . 46 4.27 Originalandreducedgravitygradientsoftheoff-diagonalterm T . . . . . . . . 47 xy 4.28 σ-τ-diagramsoftheoff-diagonalterm T . . . . . . . . . . . . . . . . . . . . . . . 48 xy 4.29 σ-τ-diagramsoftheoff-diagonalterm T . . . . . . . . . . . . . . . . . . . . . . . 48 xy B.1 Sinussignal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII B.2 sigma-tauplotforthesinussignal . . . . . . . . . . . . . . . . . . . . . . . . . . . XVIII B.3 Graphicalsolutionofthedeterminationofthemaximum . . . . . . . . . . . . . . XIX
Description: