JLowTempPhysDOI10.1007/s10909-016-1483-2 Analysis of electronic and structural properties of surfaces and interfaces based on LaAlO and SrTiO 3 3 Piyanzina I.I. · Lysogorskiy Yu.V. · VarlamovaI.I. · KiiamovA.G. · KoppT. · EyertV. · NedopekinO.V. · TayurskiiD.A. 6 1 0 2 Received:4June2015/Accepted:4January2015 n a Abstract Recently, it was established that a two-dimensional electron system can J 5 ariseattheinterfacebetweentwooxideinsulatorsLaAlO3andSrTiO3.Thisparadig- matic example exhibits metallic behaviours and magnetic properties between non- 1 magnetic and insulating oxides. Despite a huge amount of theoretical and experi- ] mentalworkathoroughunderstandinghasyettobeachieved.Weanalyzedthestruc- l e turaldeformationsofaLaAlO (001)slabinducedbyhydrogenadatomsandoxygen 3 - vacanciesatitssurfacebymeansofdensityfunctionaltheory.Moreover,weinvesti- r t gatedtheinfluenceofsurfacereconstructiononthedensityofstatesanddetermined s . the changeof the localdensity of states at the Fermi levelwith increasingdistance t a from the surface for bare LaAlO and for a conducting LaAlO /SrTiO interface. 3 3 3 m In addition, the Al-atom displacements and distortions of the TiO -octahedra were 6 - estimated. d n Keywords Surface·interface·LAO/STO·defects·densityfunctional·electronic o structure c [ 1 1 Introduction v 9 0 Sincethediscoveryofhightemperaturesuperconductivity[1]considerableefforthas 0 beenmadeto studythebehaviorofstronglycorrelatedelectronsintransitionmetal 4 oxides. Various types of impurities, crystal structure defects, stoichiometric varia- 0 tions,externalelectricandmagneticfields,lightilluminations,uniaxialorhydrostatic . 1 0 PiyanzinaI.I.,LysogorskiyYu.V.,VarlamovaI.I.,KiiamovA.G.,NedopekinO.V.,TayurskiiD.A. 6 InstituteofPhysics,KazanFederalUniversity,KremlyovskayaSt.18,420008Kazan,Russia 1 PiyanzinaI.I.,KoppT. : EPVIandCenterforElectronicCorrelationsandMagnetism,Universita¨tAugsburg,Universita¨tsstraße1, v D-86135Augsburg,Germany i E-mail:[email protected] X EyertV. r MaterialsDesignSARL,18ruedeSaisset,92120Montrouge,France a 2 PiyanzinaI.I.etal. pressuresareaccessibleparametersforthetransitionmetaloxidepropertiesoffilms andheterostructures.Thestructuraltuningof filmsresultsinavarietyoffascinatingmany-bodyphenomena. Inparticular,theparadigmexampleofaheterostructurebetweenthenon-magnetic and insulating oxides LaAlO (LAO) and SrTiO (STO) demonstratesrich physics 3 3 includingthecoexistenceofsuperconducting2Delectronliquid[2,3,4,5]andmag- netism[5,6,7,8,9,10,11]. Theaimofthepresentstudyistoinvestigatetheelectronicpropertiesandstruc- turaldistortionsofsurfacesandinterfacesbasedonLAOandSTObymeansofden- sityfunctionaltheory. 2 Method Weperformedab-initiocalculationswithindensityfunctionaltheory(DFT)[12,13] and the Vienna Ab-Initio Simulation Package (VASP 5.3) [14] implemented into MedeAsoftware[15].Exchangeandcorrelationwereincludedatthelevelofthegen- eralizedgradientapproximation(GGA)[13].Wehaveusedtheprojector-augmented wavemethod[16,17]withaplane-wavebasissetandacutoffenergyof400eV.The forcetolerancewas0.05eV/A˚ andtheenergytolerancefortheself-consistencyloop wasequalto10−5eV.TheBrillouinzonewassampledonagridof5×5×1k-points (7×7×1for4LAO/4.5STO/4LAOheterostructure).Inordertoavoidtheinteraction ofsurfacesandslabswiththeirperiodicimagesduringsimulation,a20A˚ vacuumre- gionperpendiculartothesurfacewasadded. 3 Resultsanddiscussions 3.1 SurfacepropertiesofLAOandSTO WeconsideredtheelectronicstructureofanLAO(001)slabthatconsistedof5.5unit cells with identicalterminationson bothsides (La+3O−2 or Al+3O−2). The central 2 region of 1.5 unit cells was kept fixed during the optimization as in Ref. [18]. It was shownin Ref. [19,20] that the surfacereconstructionaffectsintrinsic transport propertiesof the slab.Since the La+3O−2 layershave a chargeof+1 and Al+3O−2 2 layers have a chargeof -1 per unit cell, the unreconstructed(1×1)LaO-terminated (001)surfacelacksoneelectron,whereastheAlO -terminatingsurfacehasanexcess 2 ofoneelectron.WeconfirmedthattheLAOsurfacewithAlO -terminationhaslower 2 energyperareaandwewillthereforefocusonthisstructureinthediscussionbelow. Underexperimentalconditions,thinfilmsofLAO aregrownontopoftheSTO substrate.ThelatticeconstantaofLAOapproachesthein-planelatticeparameteraof STO[2],thereforetheLAOlatticeparameterwasfixedatthisvalue(a=3.941A˚ from ourGGAcalculationforbulkSTO).Itfollowsfromourfindings(seeFig.1)thatthe bare LAO surface with AlO -terminationis a semiconductorwith a verysmall gap 2 separatingthebulkbandsandanarrowsurfacelevel. Itisknownthatthepresenceofimpuritiesonthesurfaceaffectsthefinaltermina- tionlayerofLAOduringsurfacegrowth[21].Weconsideredthecaseofahydrogen 3 1.0 0.6 0.8 0.5 OS,a.u.00..46 OS,a.u.00..34 D D0.2 0.2 0.1 0.0-2 -1 0 1 2 3 4 0.0 -0.4 -0.2 0.0 0.2 E-EF,eV E-EF,eV (a) (b) (c) Fig. 1: Top view of an optimized (2×2) bare LaAlO (001) surface with AlO - 3 2 termination (a), corresponding density of states (DOS) profile (b) and its enlarged version near the Fermi level (c). Red spheres denote oxygen, blue spheres denote lanthanumandyellowspheresdenotealuminum. (H) adatomwhich is presentin almostallgrowthandannealingenvironments.The top viewof the optimized(2×2)LaAlO surfacewith H-adatomatthe surfaceand 3 correspondingDOSareshowninFig.2.AsintheworkofKrishnaswamyetal.[18] theH-adatombondstooxygen.Ittakesapositionbetweenthestrontiumandoxygen andislocatedabovethesurfaceplane.ComparingFig.1b,candFig.2citfollows thatthepresenceofaH-adatomleadstoa fillingoftheemptystatesrightabovetheFermilevelofpureLAOand,therefore,a suppressionofthealbeitsmallsurfaceconductivity. 7 6 5 a.u.4 OS,3 D 2 1 0-3 -2 -1 0 1 2 3 4 E-EF,eV (a) (b) (c) Fig. 2: Top (a) and side (b) view of an optimized (2×2) LaAlO (001) surface 3 withAlO -terminationandH-adatomswithcorrespondingdensityofstates(c).Red 2 spheres denote oxygen, blue spheres denote lanthanum and yellow spheres denote aluminumm,andwhitespheresdenotehydrogen. Thesecond type of surfacereconstructionis caused by an oxygen(O) vacancy. Thistypeisoneofthemoststudied[10,22,23,24,25].Forthistypeofreconstruction wetooka(2×2)cell(Fig.3).AsinthecaseofH-adatomsweobtainedasuppression of surface conductivity(Fig. 3 c). We performedthe same calculationsfor an STO slab and in contrastto LAO, the STO surfacedid notshowempty states justabove theFermilevelandexhibitedthesameinsulatorbehaviorasthebulkSTO. 3.2 LAO/STO/LAOheterostructureproperties TheheterostructuresinourcalculationsconsistedofacentralregionofSrTiO (with 3 fixed number of layers N =4.5) boundedon both sides with a varying number STO 4 PiyanzinaI.I.etal. 7 6 5 a.u.4 OS,3 D 2 1 0-3 -2 -1 0 1 2 3 4 E-EF,eV (a) (b) (c) Fig. 3: Top (a) and side (b) view of an optimized (2×1) LaAlO (001) surface 3 withAlO -terminationandO-vacancywithcorrespondingdensityofstates(c).Red 2 spheresdenote oxygen,blue spheresdenotelanthanum,yellow spheresdenote alu- minum,×indicatestheoxygenvacancyandarrowspointtheatomsdisplacement. ofLaAlO layers(seeFig.4).Accordingtoexperimentalevidence[2,4],then-type 3 contactwith (TiO )0-(LaO)+ showsconductivityatthe interfaceand,therefore,we 2 havefocusedonthistypeofinterface. Fig.4:Structureof4LAO/4.5STO/4LAOsuperlattice. 7 7 7 6 6 6 5 5 5 a.u.4 a.u.4 a.u.4 OS,3 OS,3 OS,3 D2 D2 D2 1 1 1 0-3 -2 -1 0 1 2 3 0-3 -2 -1 0 1 2 3 0-3 -2 -1 0 1 2 3 E-EF,eV E-EF,eV E-EF,eV (a) (b) (c) Fig.5:DensityofstatesplotsforLAO/4.5STO/LAOsuperlatticeinterfacewith(a) 2LAOlayers,(b)3LAOlayers,(c)4LAOlayers. We calculatedthedensityofstatesprofilesforavaryingnumberofLAO layers (Fig.5a-c).Itwasfoundthatthebandgapdecreaseswithanincreaseinthenumberof LAOlayers.AtfourLAOlayersthebandgapoftheLAO/STO/LAOheterostructure vanishes (in agreement with [26]). Layer resolved analysis of the density of states andstructuraldeformationwasperformedforthissystem(Fig.6). Fig. 6 a presents the spatially resolved DOS at the Fermi level n(E ) of a 4 F LAO/4.5STO/4LAOheterostructure.Themaximumintensitycorrespondstosurface AlO andtheTiO layersontheinterfaceandagreeswellwithpreviousfindings[27, 2 2 10,2]. The value of n(E ) doesnotvanish in the middle of the STO slab due to its F 5 a.u.0.020 level,0.015 mi Fer0.010 the0.005 at OS0.000 D 0 5 10 15 20 25 LayerNo. (a) Q a Q 0,16 Q z’ (b) 0,16 Q z’’ ¯0,02 ment, ¯0,12 mean value,0,01 (c) 0,12 Displace00,,0048 Distortion from the -00,,0001 00,,0048 -0,02 LaO LaO LaO LaO SrO SrO SrO SrO LaO LaO LaO LaO 0,00 0,00 AlO2AlO2AlO2AlO2TiO2 TiO2 T iO2TiO2 TiO2AlO2AlO2AlO2AlO2 Fig. 6: Projection onto the different layers of 4 LAO/4.5 STO/4 LAO superlattice: density of state at the Fermi level calculated in a small energy window (40 meV) (a), displacement of Al atoms with respect to oxygen plane (b) and symmetrized displacementsQ(normalcoordinates)ofTiO octahedralsystems [28](c). 6 smallthicknessduringsimulations.OrbitaldecompositionofDOSindicatesthatthe electronic states at the Fermi level consist entirely of Ti 3d states, which agrees xy with previous work [10,11,27]. As in the case of a bare LAO surface with AlO 2 termination,thereisacontributionton(E )fromthesurfacelayers. F As a result of the DFT structural optimization we obtained distortions of the LAO/STOheterostructure,seeFig.4.Tiatomsmovedtowardsthecenteroftheslab, whereas La atoms shifted towards the surface. Fig. 6 b shows the displacement of Alatomsoutoftheoxygenplanes.ThebiggestshiftwasobtainedforAlatomsnear theLAO/STOinterface.Thesymmetrizeddisplacements,Q,(normalcoordinates)of TiO octahedralsystemarepresentedinFig.6c.Q indicatesthecollectiveatomdis- 6 i placements,which,underthesymmetryoperation,transformaccordingtooneofits irreduciblerepresentations[28].ThesmallestmagnitudewasfoundforQ breathing a mode,whichcorrespondstoatotallysymmetricshiftingofOatomsoutofthecen- ter Ti atom. Further non-zero normal coordinates, Q, were associated with oxygen movementsinz-directionperpendiculartotheinterface,andtheyledtothesplitting oft orbital. 2g 6 PiyanzinaI.I.etal. 4 Conclusion Inthepresentwork,bymeansofDFTcalculationsonthe GGAleveloftheory,we haveinvestigatedthestructuralandelectronicpropertiesofthesurfacesandinterfaces basedonthetwoinsulators,LAOandSTO.WefoundthatthebaresurfaceofLAO with AlO -termination has conductive surface layers, whereas the STO surface is 2 insulating.Twoconsideredtypesofsurfacedefects(H-adatomandO-vacancy)ofthe AlO -terminated(001)LAO slab lead to a suppressionof surface conductivity.For 2 theLAO/STO/LAOinterface,aninsulator-metaltransitionwasfoundbyincreasing thenumberofLAOlayersfromthreetofour.Thelargestcontributiontotheinterface conductivityisfromtheTiO layers(Tid state),decreasingwithdistancefromthe 2 xy interface.We also obtainedsurfaceconductivity,which we expectto be suppressed bydefectsasforthecaseoftheLAOslab. Acknowledgements Thereported studywas supported bythe Supercomputing Center ofLomonosov Moscow StateUniversity withsupportoftheRussianGovernment ProgramofCompetitive Growthof KazanFederalUniversityandoftheDFGSonderforschungsbereichTRR80.TheworkofA.G.Kiiamov wasfundedbythesubsidyallocated toKazanFederalUniversityforthestateassignmentinthesphere ofscientificactivities. TheauthorsacknowledgehelpfuldiscussionwithD.Juraschek,A.Petrova,Kate ReidyandJessicaWeitbretch. References 1. J.G.Bednorz,K.A.Mu¨ller,Z.Phys.B64,189(1986). 2. A.OhtomoandH.Hwang,Nature427,423(2004). 3. N.Reyren, S.Thiel, A.D.Caviglia, L.F.Kourkoutis, G.Hammerl, C. Richter, C. W.Schneider, T.Kopp,A.-S.Ru¨etschi,D.Jaccard,M.Gabay,D.A.Muller,J.-M.Triscone,andJ.Mannhart,Science 317,1196(2007). 4. S.Thiel,G.Hammerl,A.Schmehl,C.Schneider,J.Mannhart,Science313,1942(2006). 5. Y.YuandA.Zunger,NatureCommun.5,5118(2014). 6. A.Brinkman,M.Huijben,M.VanZalk,J.Huijben,U.Zeitler,J.Maan,W.VanderWiel,G.Rijnders, D.Blank,andH.Hilgenkamp,NatureMat.6,493(2007). 7. L.Li,C.Richter,J.Mannhart,andR.Ashoori,NaturePhys.7,762(2011). 8. Ariando,X.Wang,G.Baskaran,Z.Q.Liu,J.Huijben,J.B.Yi,A.Annadi,A.R.Barman,A.Rusydi, S.Dhar,Y.P.Feng,J.Ding,H.Hilgenkamp,andT.Venkatesan,NatureCommun.2,188(2011). 9. B.Kalisky,J.A.Bert,B.B.Klopfer,C.Bell,H.K.Sato,M.Hosoda,Y.Hikita,H.Y.Hwang,andK. A.Moler,NatureCommun.3,922(2012). 10. N.Pavlenko,T.Kopp,E.Tsymbal,J.Mannhart,andG.Sawatzky,Phys.Rev.B86,064431(2012). 11. N.Pavlenko,T.Kopp,J.Mannhart,Phys.Rev.B88201104(2013). 12. P.HohenbergandW.Kohn,Phys.Rev.136,B864(1964). 13. J.P.Perdew,K.Burke,andM.Ernzerhof,Phys.Rev.Lett.77,3865(1996);W.KohnandL.J.Sham, Phys.Rev.A140,1133(1965) 14. G.KresseandJ.Furthmu¨ller,Phys.Rev.B54,169(1996). 15. MedeA(cid:13)R-2.17,MaterialsDesign,Inc.,AngelFire,NM,USA,2015. 16. P.E.Blo¨chl,Phys.Rev.B50,17953(1994). 17. G.KresseandD.Joubert,Phys.Rev.B59,1758(1999). 18. K.Krishnaswamy,C.Dreyer,A.Janotti,andC.VandeWalle,Phys.Rev.B90,235436(2014). 19. A.Janotti,L.Bjaalie,L.Gordon,andC.VandeWalle,Phys.Rev.B86,241108(2012). 20. Y.Xie,Y.Hikita,C.Bell,H.Y.Hwang,NatureCommun.2,494(2011). 21. J.Yao,P.Merrill,S.Perry,D.Marton,andJ.Rabalais,J.Chem.Phys.108,1645(1998). 22. A.Kalabukhov,R.Gunnarsson,J.Bo¨rjesson,E.Olsson,T.Claeson,andD.Winkler,Phys.Rev.B75, 121404(2007). 7 23. V.Vonk,J.Huijben, D.Kukuruznyak, A.Stierle, H.Hilgenkamp, A.Brinkman, andS.Harkema, Phys.Rev.B85,045401(2012). 24. Y.Li,S.N.Phattalung,S.Limpijumnong,J.Kim,andJ.Yu,Phys.ReviewB84,245307(2011). 25. L.Zhang,X.F.Zhou,H.T.Wang,J.J.Xu,J.Li,E.Wang,andS.H.Wei,Phys.Rev.B82,125412 (2010). 26. F.Cossu,U.Schwingenschlo¨gl,andV.Eyert,Phys.Rev.B88,045119(2013) 27. R.PentchevaandW.E.Pickett,Phys.Rev.B74,035112(2006). 28. I.B.Bersuker,TheJahn-TellerEffect,CambridgeUniversityPress,(2006). .