ebook img

analysis of drag reduction using aerodynamic devices on commercial buses by computational fluid ... PDF

131 Pages·2015·1.68 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview analysis of drag reduction using aerodynamic devices on commercial buses by computational fluid ...

ANALYSIS OF DRAG REDUCTION USING AERODYNAMIC DEVICES ON COMMERCIAL BUSES BY COMPUTATIONAL FLUID DYNAMIC SIMULATION BY RACHEL BROWN A THESIS SUBMITTED TO THE FACULTY OF ALFRED UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING ALFRED, NEW YORK September, 2015 Alfred University theses are copyright protected and may be used for education or personal research only. Reproduction or distribution in part or whole is prohibited without written permission from the author. Signature page may be viewed at Scholes Library, New York State College of Ceramics, Alfred University, Alfred, New York. COMPUTATIONAL SIMULATION OF DRAG REDUCTION USING AERODYNAMIC DEVICES ON COMMERCIAL BUSES BY RACHEL BROWN B.S. UNION COLLEGE (2013) SIGNATURE OF AUTHOR___________________________________ APPROVED BY____________________________________________ DR. SEONG-JIN LEE, ADVISOR _______________________________________________ DR. WALLACE LEIGH, ADVISORY COMMITTEE _______________________________________________ DR. JOE ROSICZKOWSKI, ADVISORY COMMITTEE _______________________________________________ CHAIR, ORAL THESIS DEFENSE ACCEPTED BY ____________________________________________ DOREEN D. EDWARDS, DEAN KAZUO INAMORI SCHOOL OF ENGINEERING ACKNOWLEDGMENTS Foremost, the author of this study would like to express her sincere gratitude to her advisor Dr. Seong-Jin Lee for the continuous support of her Master's study and research, for his patience, motivation, and enthusiasm. His guidance helped her throughout all the research and writing of this thesis. Research could also not have been completed without the financial support of the Kazuo Inamori School of Engineering and Dean Edwards. The author would also like to acknowledge her thesis committee members Dr. Wallace Leigh and Dr. Joe Rosiczkowski in their time and support of this study. Lastly she would like to acknowledge the continued support of her parents throughout her education. iii TABLE OF CONTENTS Page Acknowledgements ...................................................................................................... iii Table of Contents ......................................................................................................... iv List of Tables ............................................................................................................... vi List of Figures ............................................................................................................ viii Abstract ....................................................................................................................... xii I INTRODUCTION....................................................................................................... 1 A. Aerodynamics of Commercial Buses .................................................................................. 3 1. Flow Field around a Bus ...................................................................................................... 3 2. Turbulence ........................................................................................................................... 5 B. Computational Fluid Dynamics (CFD) Software ............................................................... 7 C. Reynolds Averaged Navier-Stokes Equations (RANS) ...................................................... 9 1. Boundary-Layer Equations ................................................................................................ 13 D. Turbulence Models ........................................................................................................... 16 A. Previous Studies on Turbulence Modeling .................................................................... 16 B. Modeling Terminology .................................................................................................. 17 C. Two-Equation Turbulence Models ................................................................................ 18 E. Aerodynamic Drag Reduction Devices ............................................................................ 27 1. Airvane as a Drag Reduction Device ............................................................................. 29 II EXPERIMENTAL PROCEDURE.......................................................................... 34 A. SolidWorks Scaled-Down Model ..................................................................................... 34 B. Parameter Study to Reach Optimized Airvane Devices ................................................... 36 C. ANSYS Fluent Setup and Procedure ................................................................................ 41 1. Geometry Setup ............................................................................................................. 41 2. Meshing Procedure ........................................................................................................ 43 3. Fluent Procedure ............................................................................................................ 48 D. Calibration of Fluent Simulations ..................................................................................... 49 III RESULTS AND DISCUSSION ............................................................................... 50 A. Calibration of Fluent ......................................................................................................... 50 B. Bus Model without Airvane .............................................................................................. 55 C. Bus Model with Airvane ................................................................................................... 61 iv 1. Top Airvane Only .......................................................................................................... 62 2. Top and Side Airvanes ................................................................................................... 74 3. Different Configurations ................................................................................................ 85 IV CONCLUSION ......................................................................................................... 91 V FUTURE WORK ...................................................................................................... 93 REFERENCES ................................................................................................................ 94 APPENDIX A: Dimensions of Full Sized Bus and 1/35th Scale Model ..................... 97 APPENDIX B: Blueprint of Side View of MCI D4505 ................................................ 98 APPENDIX C: SolidWorks 1/35th Scaled Model of Commercial Bus ....................... 99 APPENDIX D: ANSYS Fluent Set-up and Procedure .............................................. 100 APPENDIX E: Calibration Raw Data ........................................................................ 106 APPENDIX F: Raw Data of Parameter Study Performed on Top Airvane ........... 108 APPENDIX G: Raw Data of Parameter Study Performed on Side Airvane .......... 113 APPENDIX H: Raw Data of Different Configurations, Bottom Airvane and Deflection Plate.............................................................................................................. 118 v LIST OF TABLES Page Table I: Model Constants for k-e Two Equation Turbulence Model ................................ 20 Table II: Closure Constants for Wilcox’s Standard k-ω Equation. .................................. 22 Table III: Model Constants for the RKE Turbulence Model ............................................ 23 Table IV: Model Constants for the Outer Layer for the SST Turbulence Model ............. 25 Table V: Model Constants for the Inner Layer for the SST Turbulence Model ............... 26 Table VI: Dimensions for Wind Tunnel Enclosure Designed in ANSYS Fluent............. 42 Table VII: Dimensions for Refinement Box. .................................................................... 42 Table VIII: A Set of Simulations was Run with Different Combinations. ....................... 86 Table IX: A Set of Simulations was Run with Different Configurations ......................... 87 Table X: Important Dimensions of MCI D4505 Commercial Bus ................................... 97 Table XI: First Run of the Calibration of the Fluent simulations. .................................. 106 Table XII: Second Run of the Calibration of the Fluent simulations. ............................ 107 Table XIII: Raw Data of Refined Angle Tests Run on the Top Airvane ....................... 108 Table XIV: Raw Data of General Expansion Ratio Tests Run on the Top Airvane ...... 108 Table XV: Raw Data of the Refined Expansion Ratios on the Top Airvane ................. 109 Table XVI: Data of the Radius of the Curved Portion of the Top Airvane. ................... 110 Table XVII: Raw Data of the Inlet Gap for the Top Airvane ......................................... 110 Table XVIII: Raw Data for the Angle of the Planar Portion of the Top Airvane........... 111 Table XIX: Raw Data of the Planar Length of the Top Airvane .................................... 112 Table XX: Raw Data of the General Angle of the Side Airvane .................................... 113 Table XXI: Raw Data of the Refined Angle of the Side Airvane .................................. 114 Table XXII: Raw Data of the General Expansion Ratio of the Side Airvane ................ 114 vi Table XXIII: Raw Data of the Refined Expansion Ratio of the Side Airvane ............... 115 Table XXIV: Raw Data Radius of Curvature of the Side Airvane ................................. 115 Table XXV: Raw Data of the Inlet Gap of the Side Airvane ......................................... 116 Table XXVI: Raw Data of the Angle of the Inlet of the Side Airvane ........................... 117 Table XXVII: Raw Data of the Planar Length of the Side Airvane ............................... 117 Table XXVIII: Raw Data of the Different Combinations .............................................. 118 Table XXIX: Raw Data of Different Configurations. .................................................... 118 vii LIST OF FIGURES Page Figure 1: Relation of aerodynamic and rolling drag to velocity of a bluff body ............... 2 Figure 2: Flow around a bluff body .................................................................................... 4 Figure 3: Relationship between time-averaged variables, fluctuations and average: (a) steady flow and (b) unsteady flow ..................................................................... 10 Figure 4: Boundary layer notation and coordinate system on a flat plate ........................ 13 Figure 5: Visual representation of the SST turbulence model .......................................... 25 Figure 6: Aivane kit created by Kirsch with important aspects numbered ....................... 29 Figure 7: Different configurations of airvanes that were mounted on the top leeward corner of the body .............................................................................................. 31 Figure 8: SolidWorks 1/35th scaled CAD model of commercial bus ............................... 36 Figure 9: Optimized airvane attached to the top horizontal edge ..................................... 39 Figure 10: Optimized airvane attached to the side vertical edges .................................... 40 Figure 11: Different element types for three-dimensional meshes ................................... 44 Figure 12: Cutcell mesh created in ANSYS for the bus model without a drag reduction device attached ................................................................................................... 46 Figure 13: Enhanced view of CutCell mesh created in ANSYS. ..................................... 47 Figure 14: Polyhedral mesh created in ANSYS Fluent .................................................... 47 Figure 15: Calibration tests run for the Realizable k-ε turbulence model utilizing a polyhedral mesh ................................................................................................. 51 Figure 16: Calibration tests run for the Realizable k-ε turbulence model utilizing a CutCell mesh ...................................................................................................... 52 viii Figure 17: Calibration tests run for the SST k-ω turbulence model utilizing a polyhedral mesh ................................................................................................................... 53 Figure 18: Graph of calibration tests run for the SST k-ω turbulence model utilizing a CutCell mesh ...................................................................................................... 54 Figure 19: Velocity contour of bus model without an airvane employed ......................... 55 Figure 20: Pressure contour found for the bus without an airvane employed .................. 57 Figure 21: Contour of turbulence kinetic energy .............................................................. 58 Figure 22: Velocity contour of the bus model without an airvane employed ................... 59 Figure 23: Pressure contour found for the bus without an airvane ................................... 60 Figure 24: Contour of turbulence kinetic energy .............................................................. 61 Figure 25: Percent reduction in the drag coefficients versus the general angles .............. 63 Figure 26: Percent reduction in the drag coefficients versus the more refined angles ..... 64 Figure 27: Percent reduction in the drag coefficients versus the general expansion ratios tested .................................................................................................................. 65 Figure 28: Percent reduction in the drag coefficients versus the more refined expansion ratios ................................................................................................................... 67 Figure 29: Percent reductions in the drag coefficient versus the radius of curvatures ..... 68 Figure 30: Percent reduction in the drag coefficients versus the inlet gaps ...................... 69 Figure 31: Percent reduction in the drag coefficients versus the angles of the planar portion of the airvane ......................................................................................... 70 Figure 32: Percent reduction in the drag coefficients versus the lengths of the planar portion ................................................................................................................ 71 Figure 33: Velocity contour of the wake of the bus model with a top airvane ................. 72 ix

Description:
MECHANICAL ENGINEERING. ALFRED, NEW YORK. September, 2015 .. Figure 12: Cutcell mesh created in ANSYS for the bus model without a drag reduction device attached . planar portion of the airvane should be approximately 1 inch above the air flow guide or. 2-3 cm. The inlet of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.