ebook img

Analysis of Autonomous Unmanned Aerial Systems Based on Operational Scenarios Using Value ... PDF

17 Pages·2017·2.18 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of Autonomous Unmanned Aerial Systems Based on Operational Scenarios Using Value ...

drones Article Analysis of Autonomous Unmanned Aerial Systems Based on Operational Scenarios Using Value Modelling AkashVidyadharan1,RobertPhilpottIII2,*,BenjaminJ.Kwasa2andChristinaL.Bloebaum2 1 InfraDroneLLC.,2411GrandAve,DesMoines,IA50312,USA;[email protected] 2 AerospaceEngineering,IowaStateUniversity,Ames,IA50011,USA;[email protected](B.J.K.); [email protected](C.L.B.) * Correspondence:[email protected] Received:1November2017;Accepted:21November2017;Published:23November2017 Abstract: Inrecentyears,theuseofUAS(UnmannedAerialSystems)hasmovedbeyondtherealm ofmilitaryoperationsandhasmadeitswayintothehandsofconsumersandcommercialindustries. AlthoughtheapplicationsofUASincommercialindustriesarevirtuallyendless, therearemany issuesregardingtheiroperationsthatneedtobeconsideredbeforethesevaluablepiecesofequipment areallowedforwidespreadciviluse. Currently,UASoperationsinthepublicdomainareguided andcontrolledbytheFAAPart107rulesafteroverwhelmingpublicpressurecausedbytheearlier 333exemption.Inordertoapproachsuchlargerissues,thispaperwillexploittheuseofvaluemodels, whichwillhelptoquantifyhowthedifferentenvironmentalandoperationalscenariosplayarolein UASoperationsbasedonthetaskbeingperformed. Theprimaryaimofthisresearchistousethe attributesfromkeyfactorsoftheUASsuchastheautonomylevels(AL)andtechnologyreadiness levels(TRL)alongwiththeiroperatingscenariofactors,suchastheenvironmentalcomplexityand taskcomplexity,basedontheoperatingenvironmentinwhichaUASperformsitstask. Toanalyze theperformanceofautonomousUASindifferentoperationalscenarios,thephysicalcharacteristics andclassofaUASmaybelinkedtoitsALandTRL.Usingtheseparameters,therisksfacedbythe UASinaparticularmissionarequantifiedandavalueisassignedtotheabstractentitiesinvolved. AlthoughtherearemanycriticalquestionswithrespecttogoodpracticestobefollowedbyUAS operators in order to obtain valuable data and information on the structures being scanned and monitored,therearemanyotherchallengeswithregardstolargescaleoperationsofUASsuchasthe ethical,legalandsocietalimplicationsthathavetobeaddressed. Keywords: UAS;structuralhealthmonitoring;civilUASapplications;valuemodelling;operational scenarioevaluation;value-basedsystemsengineering;valuedrivendesign 1. Introduction TheintroductionofUASintotheNationalAirspaceSystem(NAS)comeswithalotofadvantages and some disadvantages which translate to gains and losses for different stakeholders involved. ThechallengesfacedbythegovernmentandmultiplestakeholderswhowishtouseUAStechnology onalargescaleareissuestiedtosafety,policy,law,ethicsandprivacy. Thisresearchstudyinvolves understandingthedifferentfactorsthataffectthedeploymentofUASonalargescalebytakinginto accountoperationalconstraintsandissuesassociatedwiththem. Understandingthesefactorsfrom theviewpointsoftheusersandoperatorsmaybeusedtoaidinamendinganddevelopingpolicies forUASoperations,whicharedirectlyrelatedtotheongoingcontroversyregardingtheregulation ofUAS. Drones2017,1,5;doi:10.3390/drones1010005 www.mdpi.com/journal/drones Drones2017,1,5 2of17 WiththerecentincreaseinthenumberofUASintheskies,measureshavetobetakentoproperly regulateandsafelycarryoutthetransitionintothisnewrealmofaerialvehicleoperation. Thisprocess willrequirethecoordinationandinvolvementofacademia,industry,governmentagencieslikethe FederalAviationAdministration(FAA)andDepartmentofDefense, localauthorities, andprivate sectorsalikeinordertosuccessfullyimplementasafe,efficientandrobustsystemforcommercialUAS operations[1–4]. Theultimategoalofsuchahighlevelpartnershipbetweentheseagencieswould betosuccessfullyintegratesmallUAS(sUAS)operationsintotheNASinordertoenhancetheuse ofUASforcommercialapplications,whileconsideringtheethical,legal,societalandenvironmental implicationsofthesetechnologies. ThecurrentUASboomforcivilapplicationsmustbecautiously carriedoutwithoutviolatinganyrightsorsafetyofindividualsortheenvironment. TheprimarygoalofthisresearchstudyistocreateavaluemodelforUASbytakingintoaccount thetechnical,environmentalandoperationalscenariosinvolvedinordertopossiblycreateadecision analysissimulationtoanalyzeandratedifferentUASbasedontheircomponents,autonomyleveland technologyreadinesslevel. Thisinturnmaybeusedinthefuturetounderstandthemisalignment betweenstakeholders’preferencesandtheregulationsduetopolicyrequirementsimposedonUAS operations. Theresearchwillinvolveusingacombinationofvarioustoolsandframeworkssuchas multidisciplinarydesignoptimization(MDO),value-drivendesign(VDD),anddecisionanalysis(DA) toanalyzeandunderstandthevariousfactorsinvolvedwhiledesigningandoperatingUASonalarge scalefortheuseofstructuralhealthmonitoring(SHM)andcivilapplications. ThemethodologyforthisresearchwillnecessitateidentifyingdifferentclassesandtypesofUAS thatcanbeusedforcommercialpurposesandrelatingthephysicalcharacteristicsoftheseUASto virtualcharacteristicssuchasALandTRLinordertoevaluatethesesystemsforthepurposeofSHM, whilestayingcompliantwiththeFAAPart107regulations. Theseevaluationmethodologiesofthe softwareandhardwareofUAScaninturnbeusedtoratetheirperformanceandguideoperational activitiesbasedonthetasksbeingperformedaroundthedifferentoperationalscenarios.Thiswillallow thevaluemodeltobeusedtocorrelateaUAStoitsoperationalenvironment. Thesecharacteristics can be represented in the form of attributes and design variables to create a value model that can captureandincorporatethetechnicaldesignaspectsoftheUAStothelegalaspectsofdeployingUAS. InordertoratetheperformancecapabilityoftheUASinitsoperationalscenarioandtoabidebythe legalconstraints,theautonomylevelandtechnologyreadinesslevelsoftheassociatedandrelevant componentsplayakeyroleinthevaluemodel. The Federal Aviation Administration is the operational branch of the Department of Transportation (DOT) that is tasked with all aspects of aerospace governance and safety within theUnitedStates[5]. Part107istheregulationovertheoperationofsmallunmannedaircraftsystems (sUAS)[6]. ThenewPart107rulesputforthbytheFAAregardingtheoperationsofsUASwillbe usedastheprimaryplatformtosetupthedifferentscenariostouseeitherasingleUAVoraswarmof UAVstomonitordifferenttypesofstructuresautonomouslyinordertoprovideaholisticviewofthe conditionofthestructurebeingsurveyed. Inordertoimplementthissysteminanefficientmanner, theauthorsapplyVDDtosystemsengineering[7]. Thismethodologywillprovideaninterdisciplinary approach to the implementation of the system while being able to communicate the design and operationalrequirementswithstakeholders’preferences. Examplesofsuchstakeholdersincludethe UASpilots,operatorsandtheFAA.Thiswillhelpidentifyrelationshipsbetweenthesubsystemsof theoverallsystemwhileincludingeconomictheoriestobetteroptimizethedesignandoperationof UASbasedonthemissionscenario,whileincorporatingthepreferencesofthestakeholders[7]. 2. UnmannedAircraftSystemModel The following UAS model will lay the groundwork for the formulation of a multi-objective optimizationfunction. Atwotieredbreakdownofamulti-copterUASmodelhasbeendevelopedasa partofthisresearchinordertoserveasatestbedfortheexecutionofdifferentoperationalscenarios requiredtoperformdifferenttaskscriticaltoSHM.ThehierarchicalmodelshowninFigure1describes Drones2017,1,5 3of17 Drones 2017, 1, 5 3 of 17 Drones 2017, 1, 5 3 of 17 atwo-tierhierarchicaldecompositionforamulti-copterUAS.Thesimplifiedmodelofamulti-copter describes a two-tier hierarchical decomposition for a multi-copter UAS. The simplified model of a UAShdaesscfirivbeesp ar imtwaor-ytiesru hbiseyrasrtcehmicsali ndeitcsomfirpsotstiiteiorn: pforro pa umlsuilotin-c,oppotewr eUr,AGSN. TChe( GsirmopulnifdiedN mavoidgealt ioof na and multi-copter UAS has five primary subsystems in its first tier: propulsion, power, GNC (Ground Controml)u,lstit-rcuocpttuerre UsAanSd hpaas yfilvoea dp.riTmhaeryse scuobnsdysttieemros fisnu ibtss yfisrtsetm tiserc: opmroppruislesioonf,m pootwoersr,, bGaNttCer (yG,IrMouUnd,G PS Navigation and Control), structures and payload. The second tier of subsystems comprise of motors, Navigation and Control), structures and payload. The second tier of subsystems comprise of motors, (unitedstatesimplementationofaGNSS),flightcomputer,3DFPVcamera,arms,bodyandlanding battery, IMU, GPS (united states implementation of a GNSS), flight computer, 3D FPV camera, arms, battery, IMU, GPS (united states implementation of a GNSS), flight computer, 3D FPV camera, arms, gearb[8o]d.yS ainncde lathndisinisg ageraerl a[8ti]v. Seilnycela trhgise ims ao rdeelal,tievaeclyh loarfgteh meopdrieml, eaarcyhd oifs tchipe lpinriemsaarny dditshciepilrinseusb asnyds tems body and landing gear [8]. Since this is a relatively large model, each of the primary disciplines and nametlhye,irG sNubCs,yssttermucst unaremse,lpy,o GwNerC,,p srtorupcutulsreios,n paonwderp, apyrolopaudlsiwonil lanindt epraayclotawd iwthilel ainctheroatcht ewr.ithIn eoacrhd erto their subsystems namely, GNC, structures, power, propulsion and payload will interact with each captuortehethr.e Inc oourdpelrin tog scaopfttuhree stehei nctoeurpalcitnigosn osf, tahDesSeM intwerialcltbioenus,s ae dDSaMss whoilwl bne iunseFdi gaus rseho2w. n in Figure other. In order to capture the couplings of these interactions, a DSM will be used as shown in Figure 2. 2. FiguFrFiegig1uu.rerHe 1 i1.e .Hr Haiericrearharicrchcahilciacdale ldc deocemocompmoppsoiostisitioitonionno o fof afa a mm muuullttliti--ic-cocooppptettere rrU UUAAASS S( U((UnUnmnmamannnannedend eA dAereAiraieal rlS iSyaysltsSetymems)t.)e . m). FigFuigreur2e. 2D. Deseisgignns sttrruuccttuurree mmaattrriixx oof faa mmulutilrtoirtoorto UrAUSA. S. Figure 2. Design structure matrix of a multirotor UAS. A Design Structure Matrix (DSM) is a representation of a system decomposition that illustrates ADesAig DneSsitgrnu cSttururcetuMrea tMriaxtr(iDx S(DMS)Mis) ias rae rperperseesenntatattiioonn ooff aa ssyysstteemm ddeceocmompopsoitsioitni othnatth ilaltusiltlruatsetsr ates the relationships of the identified entities (subsystems) that make up an entire system of interest thereltahteio rneslahtiiponssohfipths eoifd tehne tiidfieendtiefinetdit ieensti(tsieusb s(syusbtesymstse)mths)a tthmata kmeaukpe uanp eann tiernetisrye sstyemsteomf ionf tienrteesrtesbta sed based on the interface media of interest such as, material interfaces, energy interfaces, etc. These onthebiansteedr foanc ethme eindtiearfoafcein mteerdeisat osuf cinhtearse,smt sautcehr iaasl,i nmtaetrefraicael si,netenrefarcgeys,i nenteerrfgayc einst,eertfca.ceTsh, eestce. iTnhteesrefa ces interfaces are commonly represented as feed-forwards and feed-backs between subsystems to interfaces are commonly represented as feed-forwards and feed-backs between subsystems to are commonly represented as feed-forwards and feed-backs between subsystems to represent connectivity [9–12]. The DSM shown has the capability to visualize the connections between the subsystemsascouplings,feedforwardsandfeedbacks[13]. Thismakesiteasierfortheusertomodel Drones2017,1,5 4of17 Drones 2017, 1, 5 4 of 17 andarneparleyszeentt hceonsnyesctteimvit,ya n[9d–1s2h]o. wThset hDeSdMe psehnodwenn chiaess tahme ocnapgatbhileitysu tbos yvsistuemalisz.e Uthsien gcotnhniescDtioSnMs and thehbieertwarecehni cthael bsurebasyksdteomwsn asm cooudpellisn,gws, efeceadn folirswtaorudts athned pfeeerdfboarcmksa n[1c3e]. aTthtrisib muateksest hita etaasireer afofrfe tchtee dby user to model and analyze the system, and shows the dependencies among the subsystems. Using thefirsttiersubsystemsasshowninFigure3. Asseenfromthefigurebelow,propulsionaffectsthe this DSM and the hierarchical breakdown models, we can list out the performance attributes that are altitude,enduranceandpayloadmassthatcanbecarriedbytheUAS;powerfromthebatteryaffects affected by the first tier subsystems as shown in Figure 3. As seen from the figure below, propulsion enduranceandrange; GNCaffectsrange,stabilityandautonomylevel,whilethestructureaffects affects the altitude, endurance and payload mass that can be carried by the UAS; power from the payloadvolume,payloadmass,proximityandmaneuverability. ThepayloadattachedtotheUAS battery affects endurance and range; GNC affects range, stability and autonomy level, while the canbsetrruecmtuorev eadffebcatss epdaoynloaitds mvoilsusmioen, ppraoyfilolaeda nmdastas,s kp,rothxeimreitbyy aanffde cmtianngeuthveercaabpilaitbyi. liTtyhea npdaytlaosakds that canbaettpacehrfeodr mto etdheb UyAthSe cUanA bSe. Trehmeopvaeydl obaadsedat tornib iutst emsicssainonb eprcohfialne gaendd btaasske,d thoenretbhye atfyfpecetsinogf tsheen sing equipcmapeanbtilitthya atnwd itlalsbkes tahtatat cchane dbet opethrfeorUmAedS bfoyr thSeH UMA.S. The payload attributes can be changed based on the types of sensing equipment that will be attached to the UAS for SHM. FiguFriegu3r.eM 3.u Mltui-lctio-cpotperteUr UAASSb brereaakkddoowwnn aanndd ccoonnnnecetcitoino ntot poeprfeorrfmoramncaen actetraibtutrtiebsu. tes. In order to set up the optimization process, we needed to develop an objective function that In order to set up the optimization process, we needed to develop an objective function that captures the goals of the stakeholders and abide by the legal constraints set by the FAA. Equation (1) capturesthegoalsofthestakeholdersandabidebythelegalconstraintssetbytheFAA.Equation(1)is is the formulation for the minimization of mass approach. The mass is assumed to be a summation theformulationfortheminimizationofmassapproach. Themassisassumedtobeasummationofall of all of the subsystems that have a mass which could affect the system. ofthesubsystemsthathaveamasswhichcouldaffectthesystem. (cid:3015) (cid:1865)(cid:1861)(cid:1866) (cid:1858)(cid:4666)(cid:1876)(cid:4667)=(cid:1839)(cid:1853)(cid:1871)(cid:1871) = (cid:3533)(cid:1839)(cid:1853)(cid:1871)(cid:1871) (1) (cid:3047)(cid:3042)(cid:3047)(cid:3028)(cid:3039) N (cid:3002)(cid:3036) min f(x) = Mass = (cid:3036)∑(cid:2880)(cid:2869) Mass (1) total Ai Side constraints are developed to fit within physicali =b1ounds, such as to keep the mass of the UAS from dropping below zero or making it too heavy for takeoff. Inequality constraints, on the Sideconstraintsaredevelopedtofitwithinphysicalbounds,suchastokeepthemassoftheUAS other hand, are based directly on the FAA Part 107 rules for UAS operations, such as maintaining a fromtodtraol pmpaisnsg obf ethloe wUAzeS rtoo obre mlesask tihnagn i5t5t olbos.h, emaavxyimfourmt aspkeeeodf fl.esIsn ethqauna 1li0t0y mcopnhs, tmraaixnimts,uomn fltihgehto ther handa,latirtuedbea osef d40d0 ifrte. catblyovoen gtrhoeunFdA lAevPela arntd1 0fl7igrhutl emsisfsoironUsA mSuostp beer actairorniesd, souuct hwaitshimn aviinsutaail nliinneg oaf total masssoigfhtth [e14U].A TShteoseb ceolnesstsratihnatsn u5s5edlb isn. ,tmhea txriamdiutimonsapl eMeDdOle sfosrtmhuanlat1io0n0 mrepprhe,semnat xthime udemsirfleisg ohft tahleti tude of400staftk.eahbooldveer, gwrhoiucnh dinl tehvies lcaasned isfl thigeh gtomveirsnsmioennst,m anuds thibgehlciagrhrtise tdheo ruetgwionitsh iinn thveis dueasliglinn sepoacfes tihgahtt [14]. Thesearceo dnesetmraeidn tinsfueasseidblein tot hueset rwahdiiltei odnesailgMninDgO thfeo frimxeud lwatiinogn UrAepSr. esentthedesiresofthestakeholder, The stakeholders in this setup will represent the government (FAA), UAS designer and the UAS whichinthiscaseisthegovernment,andhighlightstheregionsinthedesignspacethataredeemed operator. Based on their preferences, each stakeholder will have different values, so the value given infeasibletousewhiledesigningthefixedwingUAS. only makes sense to the stakeholder. The true preferences of the stakeholders interested in taking The stakeholders in this setup will represent the government (FAA), UAS designer and the advantage of UAS can be obtained by analyzing the viewpoints of stakeholders obtained from UASoperator. Basedontheirpreferences,eachstakeholderwillhavedifferentvalues,sothevalue multiple sources as demonstrated in Table 1. This table is a representation of the true preferences of givenUoAnSl yopmeraaktoerss fsreonms editfofetrhenet sitnadkueshtroields;e trh.e Tdhatea tprureesepnrteedfe irne nthcee staobflet ihse exsttraakcetehdo flrdoemrs thine tNerTeIsAte d in takincgoandvevnaendt amgeulotif-sUtaAkSehcoalndebre doibsctuaisnsieodnsb yduaen atloy zai npgrethsiedevnietiwal pmoienmtsoroafnsdtuakme hisosludeedr sboyb tfaoirnmeedr from multiPprleesisdoeuntr cOebsaamsad foerm “oPnrosmtroatitnegd EicnonToambicle C1om. pTehtiitsivteanbeslse Wishiale rSeapfergeusaernditnagt iPornivoacfyt, hCeivtirl uReighptrse, faenrde nces of UACiSvilo Lpieberrattieosr isn fDroommesdticif Ufesree onf tUinnmdaunsnterdi eAsi;rctrhafet Sdyasttaemps”re [s1e5n]. tTehdisi mnetehteintga cbolmepisriseexdt roafc mteedmfbreorms the NTIAconvenedmulti-stakeholderdiscussionsduetoapresidentialmemorandumissuedbyformer PresidentObamafor“PromotingEconomicCompetitivenessWhileSafeguardingPrivacy,CivilRights,and CivilLibertiesinDomesticUseofUnmannedAircraftSystems”[15]. Thismeetingcomprisedofmembers Drones2017,1,5 5of17 andentitiesfromacademia,industry,governmentsectorsandcivilsociety,therebygivingaholistic viewoftheircombinedopinionsforthedevelopmentofregulationwithregardstoUAS. Drones 2017, 1, 5 5 of 17 Table1.PreferencesofUASoperatorsfromvariousindustries. and entities from academia, industry, government sectors and civil society, thereby giving a holistic view of their comFbairnmeder osp&inAiogns for the development of regulationU wniitvhe rrseigtayrds to UAMSe.d iaHouses& Energy&Construction Associations Researchers Journalists Table 1. Preferences of UAS operators from various industries. Precision Inspection& Research& Operation Photojournalism FAagrrmiceurlstu &re Ag MEaninetregnya n&c e UnEivdeurcsaittyio n Media Houses & Associations PoCwoenrslitnruecintisopne ct Researchers Journalists Photos—RGB,IR, Precision Inspection & Research & Operation NDVI Gasleaksdetection ToolforR&Din PhoPthoojotourannadlivsimde o Task Agriculture Maintenance Education Thermography multiplefields footagefornews Power line inspect Photos—RGB, IR, Spraying Gas leaSkHs Mdetection Tool for R&D in Photo and video Task NDVI Environment RuralFarmland UrbTahner&mRougrraalpahrye as muClotinpfilen efidelzdosn es fooBtuagsye uforrb annewarse as Spraying SHM Ownershipof Currentrulesaretoo Noreqstodisclose Environment Ruscraanl Fdaartma.land Urbaconn &st rRauinrainl gareas ConTfrienaetdin zsotintueste s Busy urdbeatna ialsr.eas Issues differentfrom Ownership of Current rules are too Intrusionover Privacylawsneedtobe Tcroematm inersctiitaulteenst itiesNoT rimeqes ftoor dtriascinloinseg & scan data. constraining privateland. loosened registration different from details. Issues InTtrrauisnioinng over Privacy laws need to commercial Specialoperations Requirements progprraivmasten elaendded. exbeem lopotisoennsefdo r reegnuUtiltsaieetisIo RnBsfor Timprreei Nvfgoaiorsc tyatrrdaradetiigniotuiinnol agnt ai&oln s UASmusthave inspection& schoolsnotFAA fordroneuse Training Special operations IDfortracking. maintenance Use IRB No additional programs needed exemptions for Requirements regulations for privacy regulations UAS must have inspection & InTable1,theexamplesofagriculturalassociationsrepresscehnotionlsg nfoart mFAerAs ,energfyora nddrocnoen ussteru ction ID for tracking. maintenance companies, university researchers representing academia and media houses representing the In Table 1, the examples of agricultural associations representing farmers, energy and journalist’s point of view are used. These potential UAS operators have different operations and construction companies, university researchers representing academia and media houses tasksbasedontheirmissionscenario,whetheritisscanningafield,sprayingpesticidesorfertilizers representing the journalist’s point of view are used. These potential UAS operators have different onfarmland,inspectingtanksforgasleaksorforcapturingfootageofaneventtoshowontelevision. operations and tasks based on their mission scenario, whether it is scanning a field, spraying Duetothenatureofthedifferentoperations,therequirements,needsandissuesfacedbyeachofthe pesticides or fertilizers on farmland, inspecting tanks for gas leaks or for capturing footage of an event operatorsalsovaryfromcase-to-casebasedontheoperationalenvironmentandtaskstobeperformed. to show on television. Due to the nature of the different operations, the requirements, needs and UASisdsueessi gfnaecresd pblayy eaacchri toicf althreo leopinerathtoersc yacllseo ovfadreys ifgronmin gcathsee-tUo-AcaSsew bitahsesdu ffionc ietnhet AoLpearnatdioTnaRlL to overesneveiraonndmpenots asnibdl ytarseksst rtoic btet hpeesrefoormpeerda. tUoArsSf droemsigvneiorsla ptlianyg at hcreitricualle rsoalen idn rtehge uclyactlieo onfs dpeusitgnfoinrtgh by theFthAeA U.ATSh iwsirthel asutifofincisehnitp AbLe tawnde eTnRtLh teop orvimersaerey asntdak peohsosilbdleyr rseisntritcht itshceases eo,pnearmatoerlsy ,frtohme gvoiovleartinnmg ent, opertahteo rrualensd adndes rieggnuelratiisonshs opwutn foinrthF ibgyu trhee4 F.ATAhe. Tmhiosd reellaftoiornusnhdipe rbsettawnedeinn tgheth perirmeqauryir setdakAehLoaldnedrsT RL forainU tAhiSs bcaassee, dnaomnetlays, ktshea ngdovoeprnemraetniot,n oapleernavtoirr oannmd ednetssigwneilrl ibs eshdoiswcnu sisne Fdiginurteh 4e. fTohlleo wmiondgelc fhoarp ter understanding the required AL and TRL for a UAS based on tasks and operational environments will usingtheexampleofSHM. be discussed in the following chapter using the example of SHM. Figure4.PrimarystakeholdersinUASoperations. Figure 4. Primary stakeholders in UAS operations. Drones2017,1,5 6of17 Drones 2017, 1, 5 6 of 17 33..V VaalulueeM MooddeellF Foormrmuulalatitoionn TThhisiss seecctitoionnw wililllp prroovvidideea ad deetatailieleddo ovveerrvvieiewwo offt thheer reelalattioionnsst thhaattw weerreed drraawwnnb beettwweeeennd dififffeerreenntt tatasskksst hthatata aU UAASSw williblle bpee prfeorrfmorimnginwgi twhirtehs preescptetoctt htoe tehnev iernovnimroennmtaelnsctaeln sacreionoarfitoh eofo ptheer aotpioenrsataisownse lals awstehlle apsh ythsiec aplhcyhsaircaaclt ecrhisatriaccstoerfiastUicAs So.f Tah iUssAeSct. ioTnhiws islleacltsioone xwpillali naltshoe eaxppplraoianc hthees taopqpuraonatcihfyeisn gto thqeuarenltaiftyioinngsh tihpes rbeelatwtioenenshtihpes UbeAtwSecehna rtahcet eUrAistSi ccshaanradctoepreisrtaictiso annadl socpeenraartiioosn.aTl hsicsenseacrtiioosn. Tsehrivs essecatsioan laseurnvcehs paas da floarunthceh cpraeadt ifoonr tohfer icsrkeaatniodnb oafr griasikn amnodd bealsr.gain models. TThheep prrimimaarryy ppaarraammeetteerrss iinnvvoollvveedd iinn tthhee ooppeerraattiioonnss iinnvvoollvviinngg aa UUAASS hheerreeiinn aarree iiddeennttiififieedd aass:: TThheem misissisoinonsc esnceanriaor,iom, ismsiiossnioonb jeocbtijevcetiavned athned UthAeS UchAaSra ccthearirsatcictes,riasstischs,o wasn sinhoFwignu rien5 F.iTghuerem i5s.s iTohne smceinsasiroion isscdenefiarnieod isb ydtehfienmede tbeyo rtohleo gmiceatlecoornoldoigtiiocnals caonnddtihtieonstsr uacntdu rtehtey pster;utchteurme istysipoen; othbeje cmtiivsseioisn doebfijnecetdivbey tihs eddeaftianaecdq ubiysi titohne mdeathtao daucqseudisaitniodnm misseitohnotda skusseadn datnhde UmAiSsscihoanr atcatesrkiss tiacnsdar ethdeiv iUdeAdS bcyhtahraecirtesriizset,iccsl aassre, AdLivainddedT RbLy. Tthheeirs tsriuzcet,u crelatsysp, eAaLn danthde TdRatLa. aTcqhue issittriuonctumreet htyopdew ailnldh atvhee adsaetta oafcaqtutriisbituiotens manedthmode twricilsl thhaavtew ai lsleht eolpf attotrdibeutetrems iannedc mometprilcesx itthya.tT whiisllm heetlph otdo odloetgeyrmcainneb ceoumsepdleaxsitay. uTnhivise rmsaelthmooddoellofgoyr acanna lbyez iunsgetdh easo pa eurnatiivoenraslasl cmenoadreiol sfofro ranUaAlySziinngo tthheer oappeprlaictaiotinoanls sscuecnharaisops rfeocri sUioAnS aignr ioctuhletur raepapnlidcapthioontos jsouucrhn aalsi spmre,cbiusitoinn atghrisicsutultduyre, wanedw pilhloutsoejotuherneaxlaismmp, lbeuotf iSnH thMis tsotuudnyd,e wrseta wnidllt uhsee etfhfeec etsxoamftphleeo opfe SrHatMion taol uscnednearrsitoanond tthhee UefAfeSc.tsT hoifs thexea omppelreatwioinllabl escuesneadritoo odnem thoen UstrAaSte. Tcohmis pelxeaxmitipesle inwviolll vbeed uinsetdh etop rdoecmesosnosftUraAteS cboamsepdleSxHitMiesa nindvholovwedim inp rtohvee dprpoecrefsosr mofa nUcAemS abyasbeeda SchHieMv eadn.d how improved performance may be achieved. FFigiguurree5 5..P Paarraammeeteterrssf oforrt htheeo oppeerraatitoionnaalls scceennaarrioioa annddU UAASSr aratitningg.. 33.1.1..V VaalulueeM Mooddeellf oforrO OppeerraatitoionnaallS Scceennaarrioio TThheet wtwoom maaininp paarraammeetteerrss tthhaatt aarreeu usseeddt tooe evvaaluluaattee tthheeo oppeerraattiioonnaall sscceennaarriioo iinn oouurr mmooddeell aarree:: eennvviriroonnmmeennttaallc coommpplelexxiittyya annddt atasskkc coommpplelexxitityy..T Thheee ennvvirioronnmmeennttc coommpplelexxitiytyi sisf ufurtrhtheerrs usubbddivividideedd bbaasseeddo onnt htheem meeteteoorroolologgicicaallc coonnddititioionnss aannddt htheei ninfrfraassttrruuccttuurree ttyyppee aarroouunnddw whhicichh tthheeU UAASSw wililllb bee ooppeerraatitningg..T Thheet taasskkc coommpplelexxitiytyi siss suubbddivividideeddi nintotod daatataa accqquuisisitiitoionnt ytyppeea annddv veehhiciclelet ytyppee..T Thhisism mooddeell wwitihtht hthees suubbddivivisisioionnsso offe eaacchho offt htheec caateteggoorrieiesso offt htheeo oppeeraratitoionnaalls scceennaarrioioi sisi lillulusstrtraateteddi ninF Figiguurree6 6 sshhoowwnnb beeloloww..A Ac coommbbinineedda annaalylysissiso offe eaacchho offt htheesseep paarraammeeteterrssw wililllb beeu usseeddt otou unnddeerrsstatannddt htheee efffefecctsts oofft htheeo oppeerraatitoionnaalls scceennaarrioioo onnt htheeU UAASSw whhilielep peerrfoforrmmininggi tistst atasskkss..I Inno orrddeerrt otoq quuaanntitfiyfye eaacchho offt htheessee ppaarraammeeteterrss,, ccoommmmoonn ttyyppeess ooffs scceennaarrioioss wweerrees stutuddieieddb baasseeddo onnt htheeirirt atasskkssa anndde ennvvirioronnmmeennt,t,t htheenn mmeetrtricicssw weerreec crreeaateteddf oforrt htheet wtwoom maainins usubbddivivisisioionnsso offt htheesseep paararammeeteterrsst hthaattd deefifnineet htheeo oppeeraratitoionnaall sscceennaarrioio:: iinnffrraassttrruuccttuurree ttyyppee aanndd ddaattaaa accqquuisisitiitoionn tytyppee.. TThheessee mmeettrriiccss aarree ssuuppppoorrtteedd bbyyw weeigighhtetedd aatttrtribibuutetessa annddt htheesseew weeigighhtstsa arerea asssisgignneeddb baaseseddo onnt htheev vaalulueeo offi tistsr erleelvevanancecet otot htheea tattrtirbibuutetse.s. Drones2017,1,5 7of17 Drones 2017, 1, 5 7 of 17 FFiigguurree 66.. MMooddeell rreepprreesseennttiinngg ccoommppoossiittiioonn ooff eennvviirroonnmmeenntt aanndd ttaasskk ccoommpplleexxiittiieess.. TThhee iinnffrraassttrruuccttuurree tytyppee isi sdidviivdiedde dbabsaedse odno tnhet hsterusctrtuurcetu threatt hwaitll wbeil slubrevesyuerdve byye dtheb yUAthSe wUhAilSe wpehrifloermpeirnfgo rmSHinMg. SHThMe . Tmheetemoreotleoogrioclaol giccoanldciotinodnist iownsillw bilel bbeabseadse dono nfafactcotorsr sssuurrrroouunnddiinngg tthhee iinnffrraassttrruuccttuurree ttyyppee wwhheerree tthhee UUAASS wwiillll bbee ppeerrffoorrmmiinngg aanndd wwiillll bbee eevvaalluuaatteedd bbaasseedd oonn tteemmppeerraattuurree,, pprreecciippiittaattiioonn,, wwiinndd ssppeeeeddss aanndd hhuummiiddiittyy.. GGiivveenn ttaasskkss iinn tthhee pprrooppoosseedd mmooddeell,, tthhee wweeaatthheerr ccoonnddiittiioonnss aarree iinnccoorrppoorraatteedda asso onneeo oftfh tehea tatrtitbriubtuestecso cnotrnitbruibtiuntgintgo tthoe thinef riansftrrausctrtuurcetutyrep ety’spceo’sm cpolmexpitlye.xAitsy.f oArst afsokr ctaosmkp cloemxitpyl,evxeithyi,c lveethyipceled teyspceri bdeesscthriebteysp tehseo tfyUpAesS otfh UatAcaSn thbaetu csaend btoe puesrefdo rtmo ptheerfoopremra tthioen osp.eTrhaetidoantsa. aTchqeu disaittiao nactqyupiessitiaorne btyrpoaeds layred ibvridoaeddlyin dtoivtihdreede diniftfoe rtehnretec adteifgfeorreienst: cIamteaggoerriyes(:2 IDm),ag3Derym (o2dDe)l,l i3nDg (mPhodoteollginragm (mPheotrtyo)garanmdmnoentr-yd)e satnrudc tnivone-edveaslturuatcitoinve( NevDaElu).aItniotnh e(NcoDnEte)x. tIno ftthheis cwonotrekx,ti mofa gtherisy wreoferrks, timotahgeerrya wrefdearsta toc othllee crtaewd dbaytau sceololefcctaemd beyra ussaet toafc chaemdetroasU aAttSacthheadt dtoo UnAotSr tehqaut idreo fnuortt hreeqrupirroe cfeusrstihnegr apnrodcewsislilntgh earnedfo wreilhl athveeraef2oDre ihmaavgee aa 2sDth iemfiangael adse ltihvee rfainbalel .d3elDivmeroabdleel.l i3nDg rmefoedreslltiongth reepferrosc teos sthoef spyrnocthesess iozfi nsgynitnhfeosrimziantgio innfcoorlmleacttieodn fcroolmlecmteudl tfirpolme 2mDulitmipalge e2sDf oimr tahgeesp fuorrp tohsee poufrpproosvei odfi npgroavitdhirnege da itmhreenes idoinmaelnspsiaocneaals spaaficnea alsd ae lfiivnearla dbeleliwvehreanblues winhgean UuAsinS.gT ah UesAeSd.a Ttaheasceq udiastiati oacnqtuyipseitsiovna rtyypinesl evvaerlys oinf dleivffieclsu oltfy dainffdicuarlteys aenledc taerde bsaesleecdteodn btaassekds tohna ttaaskUsA thSamt aa yUbAeSc mapaayb lbeeo cfappearbfloer mofi npgerifnoromrdinegr tion coordlleecrt tion cfoorllmecatt iionnforremgaartdioinng rethgearhdeianlgth thoef ahesatrluthc toufr ea astsrwucetlulraes aws hwetehlle arso wrnhoetthdeart aorc annobt edaptrao cceasns ebde bpyrotcheessUeAd Sbya sthoep pUoAseSd asto orpepqousieridn gtos reecqounidrainrgy saencdontedratirayr yanpdro tceerstisainryg .processing. AAlltthhoouugghh tthheerree aarree ffoouurr mmaajjoorr ssuubbddiivviissiioonnss ffoorr tthhee ttwwoo ppaarraammeetteerrss ppeerrttaaiinniinngg ttoo tthhee ooppeerraattiioonnaall sscceennaarriioo,, iinn tthhiiss mmooddeell,, wwee wwiillll oonnllyy bbee qquuaannttiiffyyiinngg tthhee ssuubbddiivviissiioonnss tthhaatt ddiirreeccttllyy aaffffeecctt tthhee UUAASS ooppeerraattiinngg eennvviirroonnmmeenntt aanndd nnoott tthhee ttyyppee ooff UUAASS iittsseellff.. TThhiiss aannaallyyssiiss wwiillll ffooccuuss oonn qquuaannttiiffyyiinngg tthhee iinnffrraassttrruuccttuurree ttyyppeess aanndd ddaatata acaqcquuisiistiitoino nmmetehtohdosd tsot coocmopmaprea riet tiot tthoet AheL AanLda TnRdLT oRfL thoef UthAeSU. TAhSe. Trehaesorena sfoorn ufosirnugs sinelgecste lseucbtdsuivbidsiiovnissi oinn soiunr oaunraalynsailsy issi stois dtioredcitrleyc tcloy-rceol-arteel attheet heneveinrvonirmonemnte fnatcftaocrtso tros ttohet haeuatountoonmoym oyf othfeth UeAUSA. S . TThhee fifirrsstt ppaarraammeetteerr eexxpplloorreedd wwiitthh rreeggaarrddss ttoo tthhee ooppeerraattiioonnaall sscceennaarriioo iiss tthhee eennvviirroonnmmeennttaall ccoommpplleexxiittyy.. TTaabblele2 2w waassp puuttt otoggetehthererw witihtha ali slitsot fodf idffieffreernetnitn finrafsratrsutrcutucrteurtey ptyespeths atthcaat ncabne bscea sncnaendnebdy tbhye tUhAe SU.AThS.i sTthaibsl etaobflien ofrfa sintrfuracstutrruecttyupree htyapsea hseatso af mseet torifc smreatnrgicisn grafnrogming1 tforo1m0 f1o rtoa b10ro faodr raa nbgroeaodf irnafnrgaes toruf icntufrraesstrvuacrtyuirnegs ivnarcyoimngp lienx ciotimesp.lTexhietivesa.l uTeheo fvtahlueem oef ttrhices minectrreicass ienscaresatshees caosm thpel ecxoimtypolefxtihtye ionff rtahsetr uicntfuraresttryupcetuirnec retyapsees firnocmreaospees nfuronmpa voepdernu ruanlproaavdesd torusuraslp ernosaidosn btori dsguesspuepnesirosntr ubctruidrgese. Tsuhpeesersmtruectrtiucrsesa.r eThasessieg nmeedtrtiocsa tatrreib uastseisgtnheadt ctoo rarettlraitbeuttoest htheacto mcoprrleelxaittey toof tthhee icnofmrapstlreuxcittyu roef atnhde tinhferyasitnrculcutdueres aiznedo tfhtehye instcrluucdteu sriez,ep ohfy tshiec asltroubcsttuarcel,e pshayrosiucnald otbhsetasctlreusc aturorue,nwd ethaeth setrruwcthuerne,t wheeaUthAeSr owpheernat tiohne sUwAilSl obpeecroantdiouncst ewdi,lgl eboeg croanpdhuycotefdth, egesuogrrroaupnhdyi nogf tlhoeca stuiornroaunnddfiancgt olorscathtiaotnm aanydc faaucstoerssi gthnaatl imntaeyr fcearuensec esitgontahle ilnintekrfbeertewnceee ntot hteheU lAinSka bnedtwtheeenp itlohte oUrAgrSo uanndd sthtaet ipoinlo.tT ohre sgeroauttnridb ustteatsioconr. eTshweislel fauttrrtihbeurteb escroatreeds wfroilml fu1rttohe1r0 bbea sreadtedon frtohmec 1o mtop 1a0r abtaivseedim onp atchtei tcohmaspoanraetaivche iomfpthaecta titt rhibaus toens. each of the attributes. Drones2017,1,5 8of17 Table2.Listofinfrastructuretypeswithattributesandmetrics. InfrastructureType Metric OpenUnpavedRuralRoads 1 PavedUrbanRoads 2 Highways 3 Houses/SmallBuildings 4 Skyscrapers 5 Dams 6 WindTurbines 7 RegularBeam&TrussBridges 8 Off-ShorePlatforms 9 SuspensionBridgeSuperstructures 10 Havingthesemetricsandattributesfortheseinfrastructuretypessetup,afunctioniscreatedthat canprovideavaluebycombiningthesemetrics,attributesandweights. Inthismodel,equalweights areassignedtoallthefiveattributesforthetypesofinfrastructure,althoughtheweightsassignedto eachoftheattributescanbechangedbasedonitsimportancecomparedtootherattributes. Itmustbe notedthatthetotalsumoftheweightsofallattributesmustadduptobe1. Eachoftheseattributes alsohasitsownsetmetricsrangingfrom1to10,andthiswillbebasedontheimpactofthatparticular attributeontheinfrastructuretype. Forexample,themetricvalueforthe‘sizeofstructure’attribute forawindturbinedependsonthecomparativesizeofthewindturbinebeinginspectedwithregard tootherwindturbines. n ∑ E(x) = M w ×A (2) E i i i=0 Oncetheinfrastructurebeingscannedisidentifiedandallthemetricsandweightshavebeen assigned to the attributes, a mathematical function is formulated as seen in Equation (2), which quantifiestheenvironmentalcomplexity. Thiswasdonebymultiplyingtheinfrastructuretypemetric (M )withthesummationoftheproductbetweentheassignedattributeweights(w)andtheattribute E i metric(A). Thisformulaquantifiestheenvironmentalcomplexityvaluefromaminimumof1toa i maximumvalueof100asshowninEquation(2). The next parameter explored in detail with regards to the operational scenario is the data acquisitionmethod. Table3wasputtogetherwithalistofdifferenttypesofdatacollectionmethods thatmaybeperformedbytheUASasapartofitsSHMtasks. Thistableofdataacquisitionmethods hasasetofmetricsrangingfrom1to10forSHMtasksthattheUASperformsbasedonitscomplexity. Thevalueofthemetricsincreasesasthedifficultyofthetasksincreasesfromdistantlowresolution imagerytoultrasoniccontactNDE.Thesetasksaresubdividedbasedonthetypeofdataitobtains such: Imagery, 3D modelling, non-contact NDE and contact NDE. Each of these divisions of data acquisitionmethodshasitsownsetofattributesbasedonthewaydataiscollected. Table3.Listofdataacquisitionmethodswithmetrics. DataAcquisitionType DataAcquisitionMethod Metric Imagery DistantLowResolutionAerialImagery 1 Imagery Close-UpAerialImagery(<2m) 2 Imagery DistantHDAerialImagery(18MP+) 3 Imagery Close-UpHDAerialImagery 4 3DModelling 3DPhotogrammetryRendering 5 3DModelling LightDetection&Ranging(LiDAR) 6 Non-ContactNDE Non-ContactNDE:InfraredThermography 7 Non-ContactNDE Non-ContactNDE:GPR(GroundPenetratingRadar) 8 Non-ContactNDE Non-ContactNDE:LaserShearography 9 ContactNDE ContactNDE:Ultrasound 10 Drones2017,1,5 9of17 Similartotheenvironmentalcomplexity,thedataacquisitionmethodsarecorrelatedtoattributes that contribute to the complexity of the data acquisition methods seen in Table 4. There are four differentsetsofattributes,oneforeachdataacquisitionclass. Table4.Listofattributeswithweightsfordataacquisitionmethods. Imagery 3DModelling Non-ContactNDE ContactNDE Attributes Weight Attributes Weight Attributes Weight Attributes Weight Weight 0.3 Weight 0.3 Weight 0.3 Weight 0.3 Composition 0.2 Precision 0.3 Accuracy 0.3 Precision 0.3 Proximity 0.3 PointDensity 0.2 Proximity 0.2 Penetration 0.2 Stability 0.2 AcquisitionTime 0.2 AcquisitionTime 0.2 ScannedArea 0.2 Oncethemetricsandattributeweightsforthedifferentdataacquisitionmethodshavebeenset up,afunctioniscreatedthatcanprovideuswithavaluebycombiningthesemetrics,attributesand weights. In this model, different weights are assigned to all the attributes for the data acquisition methodsbasedontheirrelativeimportancecomparedtootherattributes. Thetotalsumoftheweights ofalltheattributesofeachdataacquisitionclassmustaddupto1. Theattributeweightsofallfour classes are further rated by metrics ranging from 1 to 10 based on the comparative impact of that particularattributeonthedataacquisitionmethod.Forexample,themetricvalueof‘equipmentweight’ forcollectingimagerydatadependsontheweightofthecameramountedontheUAScomparedwith theweightofothercameras. n ∑ T(x) = M w ×A (3) T i i i=0 Oncethetasktobeperformedontheinfrastructurehasbeenidentifiedandallthemetricsand weights assigned to the attributes are finalized, a mathematical function is formulated as seen in Equation(3),whichquantifiesthetaskcomplexitybasedonthedataacquisitionmethods. Theformula canbeappliedfortheothertasksandthegreatesttaskcomplexityvalueamongstthemultipletasks maybeusedasthefinaltaskcomplexityvaluetoconductanyfurtheranalysis. Inthisway,theformula developedinEquation(3)quantifiesthetaskcomplexityvaluefromaminimumof1toamaximum valueof100,therebyallowingtaskcomplexitytobescaledtotheenvironmentalcomplexity. 3.2. ValueModelforUASRatingandEvaluation Autonomousmobilerobotictechnologyhasrapidlyevolvedoverthelastdecadeandhasbegun to impact multiple sectors across various industries [16]. In order to characterize, compare and evaluatetheadvancementsinautonomyofavehicle,commontaxonomiesandterminologieswill needtobeputinplace. Currently,multiplegovernmentagenciessuchastheDepartmentofDefense Joint Program Office (JPO), the U.S. Army Maneuver Support Center, and the National Institute of Standards and Technology (NIST) have separate but related on-going efforts to describe levels of robotic behaviors [4]. Although most of these are military related projects for combat systems, similarautonomousbehavioralmodelscanbemodifiedforcommercialoperations. Althoughthereare multiplereferencesandmetricsthathavebeencreatedforUASautonomyevaluation,here,aversion oftheautonomyandtechnologicalreadinessassessment(ATRA)isusedandcanberetrofittedintothe largermodelfordecisionanalysisofUASoperationsexplainedearlier. Thetwoparametersthatareusedtoevaluatetheautonomyandrobustnessofasystembeing implementedare,autonomylevel(AL)andtechnologyreadinesslevel(TRL).Theseparametersare unifiedtoformtheATRA,whichcanbeusedtoprovideaholisticviewofthesoftwarecomponent ofUAS[4]. TheformationofthenetworkbetweentheALandTRLtoformtheATRAisshownin Figure7. TheuseofthisframeworktoevaluateautonomousUAScanbeusedtomakebothqualitative andquantitativecomparisonsthatmaybeaccomplishedwiththehelpofaformulatedvaluefunction. DDrroonneess 22001177,, 11,, 55 1100 ooff 1177 qualitative and quantitative comparisons that may be accomplished with the help of a formulated Tvhaleucer efuanticotnioonf. sTuhceh carefaratimone wofo srukcehn aa bfrleasmeevwalourakt ieonnabthleast ceavnalbueatsiyosnt ethmaat tcicaanl lbyeu ssyesdtetmoacotimcapllayr eusthede atou tcoonmopmayreo tfhoen aeuUtoAnVomtoya onfo othneer .UAV to another. Figure7.Modelrelatingautonomylevelandtechnologyreadinesslevel. Figure 7. Model relating autonomy level and technology readiness level. TThhee AATTRRAAf frraammeewwoorkrkc acnanb ebeu suesdedto tmo meaesausruerteh ethme amtuartiutyriatyn danrodb ruosbtnuesstnseosfst hoef UthAe SU[A17S] .[1In7]t.h Iins sthtuisd ys,tuthdeyf, rtahme efwraomrkewisourske dist ouisnevde stoti giantveehstoigwatteh ehyocwan thbeeyu sceadn ibneS HusMeda pinp lSicHatMio nasptpolidcaetteiornmsi ntoe tdheeteorpmtiimnea lthleev oelpotifmaault olenvoeml yoff oarudtoifnfoermenyt ftoars kdsiftfoerbeenpt etarfsokrsm toe db.eH peerref,owrmeewdi.l lHuesreet, hweed ewfiinlli tuiosen sthoef AdeLf,inTiRtiLonasn doft hAeLA, TTRRLA ,adnedfi tnheed AbTyRNAiS, Tdeafsinaeudto bnyo mNyiSlTe vaesl saufotronuonmmya nlenveedlss yfostre umnsm(AanLnFeUdS )sy[1st7e,1m8s] w(AitLhFnUeSc)e [s1s7a,r1y8]m woidthifi nceactieosnssarfyro mmoodtihfiecratsioounrsc fersotmo fiotthoeurr sSoHurMcesa ptop fliict aotuiorn SsHaMge anpdpal.iTcahteioenxsa amgpenledoaf. aThUeA eVxatmhaptlwe oafs aa sUsAemVb tlheadt wwiatsh aosfsfe-tmheb-lsehde wlficthom ofpf-otnheen-sthsealnf dcocmonptornoelnsytss taenmd cisountsreodl asynsdteemva ilsu uasteedd banasde devoanlutahteeAd TbRasAedfr aomn ethweo ArkTdReAv eflroapmeedwtoordke mdeovnesltorpateedi ttso udseamgeonanstdraetfef eictsti vuesnageses ainndt heeffeevcatilvueantieosns oinf athuet oenvoamluoautisonU AofS a,uwtohniloemalosuosk UeeApSin, gwthrialcek aolsfoi tkseoeppeinragt itorancakl eonf vitisr oonpmereanttio.nal environment. TThhee ffiirrsstt ppaarraammeetteerr eexxpplloorreedd iinn ddeettaaiill isis ththee aauutotonnoommyy lelvevele l(A(ALL). )T.hTihsi sisi as aseste otfo mfmetreitcrsi ctshatht aist iusseudse tdo tsoysstyemsteamticaatlilcya lelyvaeluvaatlue aatneda mndeamsueraes uthree tahuetoanuotmonooums ocaupsacbaiplitaibeisl iatineds lainmditalitmiointas toiof nas UoAf aS U[1A8]S. [T1h8e].seT hmeseetrmic ertarincgreasn gfreosmfr o1m to1 1to0,1 r0e,prerepsreensetinntgin tghteh eacaccecsessisoino noof faauutotonnoommoouuss bbeehhaavviioorr ffrroomm rreemmoottee--ccoonnttrroolllleedd UUAASSw iwthitrhu drimudeinmtaernytafirrys tofirrdste roflridgehrt cfolingthrot lucopnttoroful lluypa uttoo nfoumllyo usaucatopnaobmiliotiuess wcaipthabnioli-thieusm wainth-p niolo-thudmecaisni-opni-lmot adkeicnigsiionnv-omlvakedinagt ianlvl.oTlvheedA aLt aolfl. aTUheA ASLis omf aa iUnlAySb aiss emdaoinnlyit bGaNseCd founn ictt iGoNnsC, wfuhnicchtioanres,p wrihmicahry araett prirbimutaertyo aetntraibbluinteg taou etnonabolminygi anutthoenhoamrdyw ina rtehec ohmarpdownaernet coofmthpeoUnAenSt. Tofh tehGe NUCASc.a Tphabe iGlitNieCs ocafpthaebiUliAtieSs aorfe tdheir UecAtlyS aprreo pdoirretciotlnya plrtoopthoertaiountoaln toom thoeu saucatopnaobmiliotiuess coafpthabeiUlitAieSs. Tofh ethleis UtoAfSt.h Tehdei flfiesrte onft tlheev edlisffoefreanutt olenvoemlsy offo aruotuornoexmaym fpolre oisurc oemxapmilpedle iins Tcoabmlepi5l.ed in Table 5. TTaabbllee 55.. LLiisstt ooff aauuttoonnoommyy lleevveellss ((AALL)) wwiitthh ddeessccrriippttiioonnss.. Autonomy Levels AutonomyLevels Level Description Level Description 1 Remote Control 1 RemoteControl 2 Automatic Flight Control 2 AutomaticFlightControl 3 System Fault Adaptive 3 SystemFaultAdaptive 4 4 GPS GAPsSsiAstsesids tNedaNviagvaigtiaotnio n 5 5 PathP PaltahnPnlainngn i&ng E&xeEcxuectiuotnio n 6 RealTimePathPlanning 6 Real Time Path Planning 7 DynamicMissionPlanning 7 Dynamic Mission Planning 8 RealTimeCollaborativeMissingPlanning 8 9 Real TimeS CwoalrlmabGorroautipveD eMciissisoinnMg Paklainngning 9 10 Swarm GrouFupl lDAetcoinsoiomno Musaking 10 Full Atonomous

Description:
Abstract: In recent years, the use of UAS (Unmanned Aerial Systems) has moved scenario evaluation; value-based systems engineering; value driven design The methodology for this research will necessitate identifying different .. of all the attributes of each data acquisition class must add up to 1
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.