ebook img

Analysis of Artifacts Inherent to Real-Time Radar Target Emulation Audrey L. Seybert PDF

145 Pages·2016·9.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis of Artifacts Inherent to Real-Time Radar Target Emulation Audrey L. Seybert

Analysis of Artifacts Inherent to Real-Time Radar Target Emulation By Audrey L. Seybert SubmittedtotheDepartmentofElectricalEngineeringandComputerScienceandthe GraduateFacultyoftheUniversityofKansas inpartialfulfillmentoftherequirementsforthedegreeof MastersofScienceinElectricalEngineering Dr. ChristopherAllen,Chairperson Committeemembers Dr. ShannonBlunt Dr. JamesStiles Datedefended: May9,2016 TheThesisCommitteeforAudreyL.Seybertcertifies thatthisistheapprovedversionofthefollowingthesis: AnalysisofArtifactsInherenttoReal-TimeRadarTargetEmulation Dr. ChristopherAllen,Chairperson Dateapproved: May9,2016 ii Abstract Executing high-fidelity tests of radar hardware requires real-time fixed-latency target emulation. Because fundamental radar measurements occur in the time domain, real- timefixedlatencytargetemulationisessentialtoproducinganaccuraterepresentation ofaradarenvironment. Radartestequipmentisfurtherconstrainedbytheapplication- specific minimum delay to a target of interest, a parameter that limits the maximum latency through the target emulator algorithm. These time constraints on radar target emulation result in imperfect DSP algorithms that generate spectral artifacts. Knowl- edgeofthebehaviorandpredictabilityofthesespectralartifactsisthekeytoidentify- ing whether a particular suite of hardware is sufficient to execute tests for a particular radar design. This work presents an analysis of the design considerations required for development of a digital radar target emulator. Further considerations include how the spectral artifacts inherent to the algorithms change with respect to the radar en- vironment and an analysis of how effectively various DSP algorithms can be used to produce an accurate representation of simple target scenarios. This work presents a modelrepresentativeofnaturaltargetmotion,amodelthatisrepresentativeoftheside effectsofdigitaltargetemulation,andfinallyatrueHDLsimulationofatarget. The Department of Energy’s National Security Campus is operated and managed by Honeywell Federal Manufacturing & Technologies, LLC under contract number DE- NA0002839. iii Acknowledgements First, I would like to thank the Department of Energy, the NNSA, and Honeywell FM&T for prioritizing and funding this research. I’ve enjoyed this experience im- mensely and found it to be fruitful. Now, I have a lot of people to thank, and in my opinion, that is a good problem to have. Dr. Chris Allen, I appreciate your guidance during this process. I don’t know where I would be without your biweekly doses of optimism and level headedness. You’ve taught me a lot and it has been a pleasure. Dr. Shannon Blunt, thank you for challenging me by your example. Doug Chritton and Kelly Gibson, you guys have been the eye of the storm. I would have been swept away without the mental reprieve you offered. Sean, Kevin, Thad, Joe, Rich, Brooke, thanks for pushing my career in this direction. It’s hard to articulate what it means to have good mentors, but the biggest compliment I can think of is that I hope that one day someone looks up to me the way I look up to you. Kelly Rodriguez, thanks for all of the little things. You are an inspiration and a reminder to never take no for an answer. I might have given up in the first week if it wasn’t for you, girl. Lu, Eric, Patrick, Cenk, Lane, John, Brandon, and Jon, I appreciate you and I’m impressed by your work. Thanks for the great discussions and opening my eyes to problems and perspectives I could never have fathomed on my own. Also, I enjoyed going on the roof. Mom and Dad, thanks for raising me to be curious and critical and capable of realizingmydreams. Theworldistrulymyoyster,andIhaveyoutothank. Dad,your phrase, “sometimes you have to do things you don’t want to do” lit the internal fire of motivation that has kept me going this whole time. Mom, thank you for fostering my creativityandteachingmethatwhenadoorcloses,Ishouldlookforawindow. iv Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 OrganizationofThesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 RadarSignalModel 5 2.1 EnvironmentModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 RadarModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 BasicReceiverProcessing . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 BasicRadarMeasurements . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.5 MathematicalRepresentation . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 TestArchitectureModels 26 3.1 DelayLineArchitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 CoaxialDelayLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 OpticalDelayLines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 DigitalMemoryArchitectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Memory-OnlyArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2.2 MemoryandSingleSidebandDopplerArchitecture . . . . . . . . . . . . . 40 3.2.3 FineDelayControlArchitecture . . . . . . . . . . . . . . . . . . . . . . . 42 v 4 SignalQualityArtifacts 43 4.1 ArchitectureIndependentErrorSources . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 AnalogReceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1.4 AnalogTransmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 DigitalKernelEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.1 MemoryDelayElements . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 DigitalFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.3 DirectDigitalSynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3 DeviceEquationswithNon-idealEffectsIncluded . . . . . . . . . . . . . . . . . . 56 5 DetailedDesignandAnalysis 58 5.1 HardwarePlatform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 RadarSignalLevelDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 HypotheticalRFFrontEnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4 TargetGeneratorAlgorithmDescription . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.1 TopLevel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.2 DelayControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.3 DopplerControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.4.4 HDLDesignSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.5 TargetGeneratorDesignSummary . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 SimulationDevelopmentandResults 74 6.1 SimulatedRadarParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 SimulatedTargetDescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3 BaselineCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1 StaticTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 vi 6.3.2 MovingTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4 VariationsontheTargetBaseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.1 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.2 MultipleTargets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.5 VariationsontheRadarBaseline . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.5.1 PRFandNumberofPulsesandCPI . . . . . . . . . . . . . . . . . . . . . 90 6.5.2 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.5.3 WindowedResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.5.4 BPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.6 VariationsontheTargetGeneratorBaseline . . . . . . . . . . . . . . . . . . . . . 95 6.6.1 SamplingRate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.6.2 IntermediateFrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.6.3 ArchitecturalImprovement . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.7 HDLComparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.8 HardwareTestResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.9 ResultsSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7 Conclusions 109 7.1 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A AnalogCircuitDesignVerification 118 A.1 NoisePowerCalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 vii List of Figures 2.1 a)Asingle"point"scattererinthemainbeamofthetransmitandreceiveantennas. b) Two scatterers used to illustrate how superposition applies to radar. c) Two facetsarrangedinsuchawaythatthereceivedsignalhasscatteredoffofboth. . . . 6 2.2 Representativeradarblockdiagram. . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Examples of Radar Waveform Modulation: a) Unmodulated Pulse, b) Linear Fre- quencyModulation(LFM),c)BinaryPhase-ShiftKeying(BPSK) . . . . . . . . . 11 2.4 RelativeSignalLevelsintheReceiver . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 RadarReceiverBlockDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Data cube with analog data superimposed on the digital samples. Each column contains the number of samples collected during a PRI spaced at the fast time samplingrate. [31] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Radarsignalrepresentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8 a) Formatted stream of raw received data, b) Match filtered output, c) Result of MatchedfilteringandDopplerProcessing . . . . . . . . . . . . . . . . . . . . . . 24 2.9 ExampleresultfromaPulseDopplerradar. . . . . . . . . . . . . . . . . . . . . . 25 3.1 Coaxial delay line based target generator architecture. Repeaters are inserted be- tweensectionsofcoaxiallinetoovercomethesignificantattenuationcharacteristic ofcoaxialcable. Notethefinalsectionofdelaylineisvariableinlength. . . . . . . 28 3.2 Fiber optic delay line based target generator architecture [22]. Note the delay mediaisvariableinlength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 viii 3.3 General laboratory digital target generator diagram. The figure includes optional multipledigitalkernelstofacilitatemultipletargetsimulations. . . . . . . . . . . . 33 3.4 MemoryOnlyconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5 Memory Read and Write Process Illustration. The target is stationary between a) andb)andismovingbetweenb)andc). . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 MemoryandSSBModulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.7 MemoryandSSBModulatorwithFineDelay . . . . . . . . . . . . . . . . . . . . 42 4.1 Frequency-tunableDDSSystem,reproducedfrom[9]. . . . . . . . . . . . . . . . 54 5.1 KC705andFMC150HighLevelBlockDiagram . . . . . . . . . . . . . . . . . . 59 5.2 CompleteSystemHighLevelBlockDiagram . . . . . . . . . . . . . . . . . . . . 61 5.3 CompleteDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 TopLevelTargetGeneratorAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . 65 5.5 DetailofAddressControlBlock . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.6 DetailofSSBMixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.7 HilbertFIRMagnitude,Phase,andImpulseResponses . . . . . . . . . . . . . . . 70 5.8 SSBModulatorOutputSidebandRejectionPerformanceComparison . . . . . . . 70 6.1 FrequencyDomainRepresentationoftheTransmittedWaveforms . . . . . . . . . 75 6.2 StaticTarget,Attenuation=21dB:(Left)-RangeCut,(Right)-DopplerCut . . . 79 6.3 StaticTarget-RangeCuts;(Left)Atten. =21dB,(Right)Atten. =119dB . . . . 80 6.4 StaticTarget,Atten. =119dB:(Left)-RangeCut,(Right)-DopplerCut . . . . . . 80 6.5 Moving Target,Basic Case, Atten. = 21dB: (Left) -Range Cut, (Right) -Doppler Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6 MovingTarget,BaseCase,Atten. =119dB:(Left)-RangeCut,(Right)-Doppler Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.7 DopplerSpectrum,v=0.1v . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 base 6.8 DopplerSpectrum,v=0.3v . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 base ix 6.9 DopplerSpectrum,v=0.5v . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 base 6.10 ComparisonofDopplerSpectrumwithofaSingleandMultipleTargetSimulation 89 6.11 ResultsofVariationofRangeResolution . . . . . . . . . . . . . . . . . . . . . . . 91 6.12 NaturalModelWithandWithoutWindowing . . . . . . . . . . . . . . . . . . . . 93 6.13 DopplerspectrumofQuantizedModelwithWindowing . . . . . . . . . . . . . . . 93 6.14 BaselineCasewithBPSK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.15 DopplerSpectrum,2f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 s 6.16 DopplerSpectrum,4f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 s 6.17 Comparisonofthreedifferentvaluesfor f . . . . . . . . . . . . . . . . . . . . . 98 IF 6.18 Variationof f withnoDopplercorrectionsuperimposedwithasincfuncionwith IF nullsat f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 ∆a 6.19 Comparison of the Doppler spectrum of the Natural, Quantized, and Interpolated Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.20 WindowedComparisonofNatural,Quantized,andInterpolatedModels . . . . . . 101 6.21 WindowedComparisonofInterpolationFactor . . . . . . . . . . . . . . . . . . . 103 6.22 ComparisonofQuantizedandHDLModels . . . . . . . . . . . . . . . . . . . . . 104 6.23 HardwareTestConfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.24 ComparisonofHardwareresultswithQuantizedModel . . . . . . . . . . . . . . . 106 A.1 SystemApproachtoNoiseTemperatureCalculation[39] . . . . . . . . . . . . . . 119 x

Description:
specific minimum delay to a target of interest, a parameter that limits the .. 6.18 Variation of fIF with no Doppler correction superimposed with a sinc funcion with .. The receiver completes the remote sensing process by collecting,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.