ebook img

Analysis III: Analytic and Differential Functions, Manifolds and Riemann Surfaces PDF

325 Pages·2015·2.176 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis III: Analytic and Differential Functions, Manifolds and Riemann Surfaces

Universitext Roger Godement Analysis III Analytic and Differential Functions, Manifolds and Riemann Surfaces Universitext Universitext SeriesEditors: SheldonAxler SanFranciscoStateUniversity VincenzoCapasso UniversitàdegliStudidiMilano CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMaryUniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah CNRS,ÉcolePolytechnique,Paris EndreSüli UniversityofOxford WojborA.Woyczynski CaseWesternReserveUniversity,Cleveland,OH Universitextisaseriesoftextbooksthatpresentsmaterialfromawidevarietyofmathematical disciplinesatmaster’slevelandbeyond.Thebooks,oftenwellclass-testedbytheirauthor, mayhaveaninformal,personal,evenexperimentalapproachtotheirsubjectmatter.Someof themostsuccessfulandestablishedbooksintheserieshaveevolvedthroughseveraleditions, alwaysfollowingtheevolutionofteachingcurricula,intoverypolishedtexts. Thusasresearchtopicstrickledownintograduate-levelteaching,firsttextbookswrittenfor new,cutting-edgecoursesmaymaketheirwayintoUniversitext. More information about this series at http://www.springer.com/series/223 Roger Godement Analysis III Analytic and Differential Functions, Manifolds and Riemann Surfaces Translated by Urmie Ray Roger Godement Paris, France Translated by Urmie Ray Translation from the French language edition: Analyse mathematique III by Roger Godement, Copyright © Springer-Verlag GmbH Berlin Heidelberg 2002. Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media ISSN 0172-5939 ISSN219 1-6675 (ele ctronic) Universitext ISBN 978-3-319-16052-8 ISBN978 -3-319-16053-5 (eB ook) DOI 10.1007/978-3-319-16053-5 Library of Congress Control Number: 2015935234 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Table of Contents of Volume III VIII – Cauchy Theory ........................................ 1 §1. Integrals of Holomorphic Functions .......................... 3 1 – Preliminary Results ..................................... 3 2 – The Problem of Primitives ............................... 8 3 – Homotopy Invariance of Integrals ......................... 18 §2. Cauchy’s Integral Formulas ................................. 31 4 – Integral Formula for a Circle.............................. 31 5 – The Residue Formula.................................... 42 6 – Dixon’s Theorem........................................ 56 7 – Integrals Depending Holomorphically on a Parameter........ 59 §3. Some Applications of Cauchy’s Method ...................... 63 8 – Fourier Transform of a Rational Fraction................... 65 9 – Summation Formulas .................................... 75 10 –The Gamma Function, The Fourier Transform of e−xxs−1 + and the Hankel Integral .................................. 78 11 – The Dirichlet problem for the half-plane .................. 86 12 – The Complex Fourier Transform ......................... 94 13 – The Mellin Transform .................................. 103 14 – Stirling’s Formula for the Gamma Function................ 118 15 – The Fourier Transform of 1/cosh πx...................... 125 IX – Multivariate Differential and Integral Calculus .......... 133 §1. Classical Differential Calculus ............................... 133 1 – Linear Algebra and Tensors .............................. 133 (i) Finite-dimensional vector spaces ........................ 133 (ii) Tensor notation...................................... 135 2 – Differential Calculus of n Variables ........................ 146 (i) Differential functions.................................. 146 (ii) Multivariate chain rule ............................... 149 (iii) Partial differentials .................................. 151 (iv) Diffeomorphisms .................................... 154 (v) Immersions, submersions, subimmersions ............... 155 3 – Calculations in Local Coordinates ......................... 155 V VI Table of Contents of Volume III (i) Diffeomorphisms and local charts ....................... 155 (ii) Moving frames and tensor fields........................ 157 (iii) Covariant derivatives on a Cartesian space ............. 161 §2. Differential Forms of Degree 1............................... 166 4 – Differential Forms of Degree 1 ............................ 166 5 – Local Primitives ........................................ 168 (i) Existence: calculations in terms of coordinates ........... 168 (ii) Existence of local primitives: intrinsic formulas .......... 170 6 – Integration Along a Path. Inverse Images................... 172 (i) Integrals of a differential form.......................... 172 (ii) Inverse image of a differential form .................... 173 7 – Effect of a Homotopy on an Integral ....................... 175 (i) Differentiation with respect to a path .................... 175 (ii) Effect of a homotopy on an integral .................... 177 (iii) The Banach space C1/2(I;E) ......................... 179 §3. Integration of Differential Forms............................. 182 8 – Exterior Derivative of a Form of Degree 1 .................. 182 (i) Physicists’ Vector Analysis............................. 182 (ii) Differential forms of degree 2 .......................... 183 (iii) Forms of degree p.................................... 186 9 – Extended Integrals over a 2-Dimensional Path .............. 191 (i) The exterior derivative as an infinitesimal integral........ 192 (ii) Stokes’ formula for a 2-dimensional path ................ 195 (iii) Integral of an inverse image........................... 197 (iv) A planar example .................................... 199 (v) Classical version ..................................... 200 10 – Change of Variables in a Multiple Integral................. 203 (i) Case where ϕ is linear................................. 204 (ii) Approximation Lemmas............................... 208 (iii) Change of variable formula ........................... 213 (iv) Stokes’ formula for a p-dimensional path................ 215 §4. Differential Manifolds ...................................... 218 11 – What is a Manifold? ................................... 218 (i) The sphere in R3 ..................................... 218 (ii) The notion of a manifold of class Cr and dimension d .... 219 (iii) Some Examples ..................................... 221 (iv) Differentiable maps .................................. 224 12 – Tangent vectors and Differentials......................... 225 (i) Vectors and tangent vector spaces ...................... 225 (ii) Tangent vector to a curve ............................. 228 (iii) Differential of a map................................. 230 (iv) Partial differentials .................................. 233 (v) The manifold of tangent vectors ........................ 233 13 – Submanifolds and Subimmersions ........................ 235 (i) Submanifolds ........................................ 236 Table of Contents of Volume III VII (ii) Submanifolds defined by a subimmersion ................ 239 (iii) One-Parameter Subgroups of a Torus .................. 242 (iv) Submanifolds of a Cartesian space: tangent vectors ...... 246 (v) Riemann spaces...................................... 248 14 – Vector Fields and Differential Operators .................. 250 15 – Vector Fields and Differential Equations .................. 252 (i) Reduction to an integral equation ....................... 253 (ii) Existence of solutions................................. 254 (iii) Uniqueness of the solution ............................ 255 (iv) Dependence on initial conditions....................... 255 (v) Matrix exponential . .................................. 258 16 – Differential Forms on a Manifold ......................... 261 17 – Integration of Differentiable Forms ....................... 262 (i) Orientable manifolds .................................. 263 (ii) Integration of differential forms ........................ 266 18 – Stokes’ Formula........................................ 269 X – The Riemann Surface of an Algebraic Function........... 275 1 – Riemann Surfaces ....................................... 275 2 – Algebraic Functions ..................................... 280 3 – Coverings of a Topological Space.......................... 285 (i) Definition of a covering ............................... 285 (ii) Sections of a covering space ........................... 287 (iii) Path-lifting ......................................... 288 (iv) Coverings of a simply connected space .................. 292 (v) Coverings of a pointed disc ............................ 295 4 – The Riemann Surface of an Algebraic Function ............. 297 (i) Global uniform branches ............................... 297 (ii) Definition of a Riemann surface Xˆ ..................... 298 (iii) The algebraic function F(z) as a meromorphic function on Xˆ ............................................... 300 (iv) Connectedness of Xˆ ................................. 303 (v) Meromorphic functions on Xˆ .......................... 305 (vi) The purely algebraic point of view ..................... 306 Index.........................................................311 Table of Contents of Volume I ................................315 Table of Contents of Volume II ...............................319 VIII – Cauchy Theory §1. Integrals of holomorphic functions – §2. Cauchy’s Integral Formulas – §3. Some Applications of Cauchy’s Method InChapterVII,§4weshowedhowasignificantpartoftheclassicaltheory ofholomorphicoranalyticfunctionsonCcanbeobtainedfromFourierseries. In fact, our universal method for constructing them – a fundamental idea of Cauchy – is to integrate holomorphic functions along curves drawn in theirdomainsofdefinitionandtherebyobtainaversionofthe“fundamental theoremofdifferentialandintegralcalculus”(FT)forholomorphicfunctions, and then to deduce countless consequences. I will present only very few of them. The general theory of analytic func- tions is of unlimited scope1 and the results needed in mathematical fields where holomorphic functions are encountered are, on the other hand, very limited in most cases. For instance, a famous result like Riemann’s theorem onconformalmappingofsimplyconnecteddomainsisrarelyused,althoughit is recommended to be familiar with it for the sake of “general knowledge”; as for classifying simply connected Riemann surfaces, which would be far more useful, it would need far too complicated developments. The very basic results and methods that we will present in this chapter are, for example, quite sufficient for the chapter devoted to the theory of Riemann surfaces or for the one on elliptic and modular functions. 1 ThetwovolumesbyReinholdRemmert,Funktionentheorie (Springer,1995,also available in English edition), more than 700 very compact pages, can give some idea of the general theory of analytic functions, but do not cover Riemann sur- faces, elliptic and automorphic functions, differential equations in the complex domain,specialfunctions,etc.,areasthatwouldrequirethousandsofadditional pages and that, at any rate, have been the subject of specialized presentations. OthernumerousavailablepresentationsincludeWalterRudin,RealandComplex Analysis (McGraw-Hill, 1966, also available in French), Jean Dieudonn´e, Calcul Infinit´esimal (Hermann,1968),inparticularusefulforitsmanyexercises,Eber- hard Freitag & Rolf Busam, Funktionentheorie (Springer-Verlag, 1995), which lists several other books, Serge Lang, Complex Analysis (Springer, many edi- tions), John B. Conway, Functions of One Complex Variable (2 vol., Springer, 1978–95),CarlosA.Berenstein&RogerGray,Complex Variables. An Introduc- tion (Springer, 1991). © Springer International Publishing Switzerland 2015 1 R. Godement, Analysis III, Universitext, DOI 10.1007/978-3-319-16053-5_1 2 VIII – Cauchy Theory Learning to use basic ideas is, therefore, much better than learning a multitude of general theorems, albeit ingenious and deep, unless, of course, the aim is to specialize in general theory. Cauchytheory(itwouldbemuchbettertosay:CauchyandWeierstrass) has been and continues to be the subject of many accounts merely differing from each other on detailed points of presentation or style; not seeing the need to reproduce them an umpteenth time, I have tried, whenever possi- ble, not to follow them, in particular regarding homotopy. As will be seen in the next chapter, apart from the residue theorem, another easy conse- quence, Cauchy’s method falls within the much more general framework of multivariate differential forms.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.