ebook img

Analysis III PDF

476 Pages·2009·8.45 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis III

Herbert Amann Joachim Escher Analysis III Translated from the German by Silvio Levy and Matthew Cargo Birkhäuser Basel · Boston · Berlin Authors: Herbert Amann Joachim Escher Institut für Mathematik Institut für Angewandte Mathematik Universität Zürich Universität Hannover Winterthurerstr. 190 Welfengarten 1 8057 Zürich 30167 Hannover Switzerland Germany e-mail: [email protected] e-mail: [email protected] Originally published in German under the same title by Birkhäuser Verlag, Switzerland © 2001 by Birkhäuser Verlag 2000 Mathematics Subject Classification: 28-01, 28A05, 28A20, 28A25, 28B05, 58-01, 58A05, 28A10, 58C35 Library of Congress Control Number: 2008939525 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 3-7643-7479-2 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2009 Birkhäuser Verlag AG Basel · Boston · Berlin P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Layout and LATEX: Gisela Amann, Zürich Printed on acid-free paper produced of chlorine-free pulp. TCF (cid:100) Printed in Germany ISBN 978-3-7643-7479-2 e-ISBN 978-3-7643-7480-8 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Foreword Thisthirdvolumeconcludesourintroductiontoanalysis,whereinwefinishlaying the groundwork needed for further study of the subject. As with the first two, this volume contains more material than can treated in a single course. It is therefore important in preparing lectures to choose a suitable subset of its content; the remainder can be treated in seminars or left to independent study. For a quick overview of this content, consult the table of contents and the chapter introductions. Thisbookisalsosuitableasbackgroundforothercoursesorforselfstudy. We hope thatits numerousglimpsesinto moreadvancedanalysiswillarousecuriosity and so invite students to further explore the beauty and scope of this branch of mathematics. In writing this volume, we counted on the invaluable help of friends, col- leagues, staff, and students. Special thanks go to Georg Prokert, Pavol Quittner, Olivier Steiger, and Christoph Walker, who worked through the entire text crit- ically and so helped us remove errors and make substantial improvements. Our thanksalsogoesouttoCarlheinzKneiselandBeaWollenmann,wholikewiseread the majority of the manuscript and pointed out various inconsistencies. Withouttheinestimableeffortofour“typesettingperfectionist”,thisvolume could not have reached its present form: her tirelessness and patience with TEX andother softwarebroughtnotonly the end product, but alsonumerous previous versions,toahighdegreeofperfection. Forthiscontribution,shehasourgreatest thanks. Finally, it is our pleasure to thank Thomas Hintermann and Birkha¨user for their usual flexibility and friendly cooperation. Zu¨rich and Hannover, July 2001 H. Amann and J. Escher vi Foreword Forewordto the English translation We are again much obliged to Silvio Levy and Matt Cargo for their careful and accurate translation of this last part of the original German treatise. Special thanks go to Thomas Hempfling from Birkha¨user Verlag for rendering possible this translation so that our analysis course is now available to a larger audience. Zu¨rich and Hannover, January 2009 H. Amann and J. Escher Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter IX Elements of measure theory 1 Measurable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 σ-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 The Borel σ-algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 The second countability axiom . . . . . . . . . . . . . . . . . . . . . . . 6 Generating the Borel σ-algebra with intervals . . . . . . . . . . . . . . 8 Bases of topological spaces . . . . . . . . . . . . . . . . . . . . . . . . . 9 The product topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Product Borel σ-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Measurability of sections . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Set functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Measure spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Properties of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Null sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Outer measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 The construction of outer measures . . . . . . . . . . . . . . . . . . . . 24 The Lebesgue outer measure . . . . . . . . . . . . . . . . . . . . . . . . 25 The Lebesgue–Stieltjes outer measure . . . . . . . . . . . . . . . . . . . 28 Hausdorff outer measures . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Measurable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 The σ-algebra of μ∗-measurable sets. . . . . . . . . . . . . . . . . . . . 33 Lebesgue measure and Hausdorff measure . . . . . . . . . . . . . . . . 35 Metric measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 The Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 The Lebesgue measure space . . . . . . . . . . . . . . . . . . . . . . . . 40 The Lebesgue measure is regular . . . . . . . . . . . . . . . . . . . . . 41 viii Contents A characterizationof Lebesgue measurability. . . . . . . . . . . . . . . 44 Images of Lebesgue measurable sets . . . . . . . . . . . . . . . . . . . . 44 The Lebesgue measure is translation invariant . . . . . . . . . . . . . . 47 A characterizationof Lebesgue measure. . . . . . . . . . . . . . . . . . 48 The Lebesgue measure is invariant under rigid motions . . . . . . . . . 50 The substitution rule for linear maps . . . . . . . . . . . . . . . . . . . 51 Sets without Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . 53 Chapter X Integration theory 1 Measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simple functions and measurable functions . . . . . . . . . . . . . . . . 62 A measurability criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Measurable R-valued functions . . . . . . . . . . . . . . . . . . . . . . . 67 The lattice of measurable R-valued functions . . . . . . . . . . . . . . . 68 Pointwise limits of measurable functions . . . . . . . . . . . . . . . . . 73 Radon measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2 Integrable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The integral of a simple function . . . . . . . . . . . . . . . . . . . . . 80 The L -seminorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 1 The Bochner–Lebesgue integral . . . . . . . . . . . . . . . . . . . . . . 84 The completeness of L . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 1 Elementary properties of integrals . . . . . . . . . . . . . . . . . . . . . 88 Convergence in L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 1 3 Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . Integration of nonnegative R-valued functions . . . . . . . . . . . . . . 97 The monotone convergence theorem . . . . . . . . . . . . . . . . . . . . 100 Fatou’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Integration of R-valued functions . . . . . . . . . . . . . . . . . . . . . 103 Lebesgue’s dominated convergence theorem . . . . . . . . . . . . . . . 104 Parametrizedintegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Lebesgue spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Essentially bounded functions . . . . . . . . . . . . . . . . . . . . . . . 110 The H¨older and Minkowski inequalities . . . . . . . . . . . . . . . . . . 111 Lebesgue spaces are complete . . . . . . . . . . . . . . . . . . . . . . . 114 L -spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 p Continuous functions with compact support . . . . . . . . . . . . . . . 118 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Continuous linear functionals on L . . . . . . . . . . . . . . . . . . . . 121 p Contents ix 5 The n-dimensional Bochner–Lebesgue integral . . . . . . . . . . . . 128 Lebesgue measure spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 128 The Lebesgue integral of absolutely integrable functions . . . . . . . . 129 A characterizationof Riemann integrable functions . . . . . . . . . . . 132 6 Fubini’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Maps defined almost everywhere . . . . . . . . . . . . . . . . . . . . . . 137 Cavalieri’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Applications of Cavalieri’s principle . . . . . . . . . . . . . . . . . . . . 141 Tonelli’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Fubini’s theorem for scalar functions . . . . . . . . . . . . . . . . . . . 145 Fubini’s theorem for vector-valued functions . . . . . . . . . . . . . . . 148 Minkowski’s inequality for integrals . . . . . . . . . . . . . . . . . . . . 152 A characterizationof L (Rm+n,E) . . . . . . . . . . . . . . . . . . . . 157 p A trace theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7 The convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Defining the convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 162 The translation group. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Elementary properties of the convolution . . . . . . . . . . . . . . . . . 168 Approximations to the identity . . . . . . . . . . . . . . . . . . . . . . 170 Test functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Smooth partitions of unity . . . . . . . . . . . . . . . . . . . . . . . . . 173 Convolutions of E-valued functions . . . . . . . . . . . . . . . . . . . . 177 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 Linear differential operators . . . . . . . . . . . . . . . . . . . . . . . . 181 Weak derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 8 The substitution rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Pulling back the Lebesgue measure . . . . . . . . . . . . . . . . . . . . 191 The substitution rule: general case . . . . . . . . . . . . . . . . . . . . 195 Plane polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 Polar coordinates in higher dimensions . . . . . . . . . . . . . . . . . . 198 Integration of rotationally symmetric functions . . . . . . . . . . . . . 202 The substitution rule for vector-valued functions . . . . . . . . . . . . . 203 9 The Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Definition and elementary properties . . . . . . . . . . . . . . . . . . . 206 The space of rapidly decreasing functions . . . . . . . . . . . . . . . . . 208 The convolution algebra S . . . . . . . . . . . . . . . . . . . . . . . . . 211 Calculations with the Fourier transform . . . . . . . . . . . . . . . . . 212 The Fourier integral theorem. . . . . . . . . . . . . . . . . . . . . . . . 215 Convolutions and the Fourier transform. . . . . . . . . . . . . . . . . . 218 Fourier multiplication operators . . . . . . . . . . . . . . . . . . . . . . 220 Plancherel’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 x Contents Symmetric operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 The Heisenberg uncertainty relation . . . . . . . . . . . . . . . . . . . . 227 Chapter XI Manifolds and differential forms 1 Submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Definitions and elementary properties . . . . . . . . . . . . . . . . . . . 235 Submersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Submanifolds with boundary . . . . . . . . . . . . . . . . . . . . . . . . 246 Local charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Tangents and normals . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 The regular value theorem . . . . . . . . . . . . . . . . . . . . . . . . . 252 One-dimensional manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 256 Partitions of unity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 2 Multilinear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Exterior products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Pull backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 The volume element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 The Riesz isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 The Hodge star operator . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Indefinite inner products . . . . . . . . . . . . . . . . . . . . . . . . . . 277 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 3 The local theory of differential forms . . . . . . . . . . . . . . . . . . . 285 Definitions and basis representations . . . . . . . . . . . . . . . . . . . 285 Pull backs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 The exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 The Poincar´elemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 4 Vector fields and differential forms . . . . . . . . . . . . . . . . . . . . 304 Vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 Local basis representation . . . . . . . . . . . . . . . . . . . . . . . . . 306 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 Local representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . 316 The exterior derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Closed and exact forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Tensor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Contents xi 5 Riemannian metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 The volume element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 The Hodge star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 The codifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 6 Vector analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 The Riesz isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 The gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 The divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 The Laplace–Beltramioperator . . . . . . . . . . . . . . . . . . . . . . 367 The curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 The Lie derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 The Hodge–Laplace operator . . . . . . . . . . . . . . . . . . . . . . . . 379 The vector product and the curl . . . . . . . . . . . . . . . . . . . . . . 382 Chapter XII Integration on manifolds 1 Volume measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 The Lebesgue σ-algebra of M . . . . . . . . . . . . . . . . . . . . . . . 391 The definition of the volume measure . . . . . . . . . . . . . . . . . . . 392 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 Calculation of several volumes . . . . . . . . . . . . . . . . . . . . . . . 401 2 Integration of differential forms . . . . . . . . . . . . . . . . . . . . . . 407 Integrals of m-forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 Restrictions to submanifolds . . . . . . . . . . . . . . . . . . . . . . . . 409 The transformation theorem . . . . . . . . . . . . . . . . . . . . . . . . 414 Fubini’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Calculations of several integrals . . . . . . . . . . . . . . . . . . . . . . 418 Flows of vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 The transport theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 3 Stokes’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 Stokes’s theorem for smooth manifolds . . . . . . . . . . . . . . . . . . 430 Manifolds with singularities . . . . . . . . . . . . . . . . . . . . . . . . 432 Stokes’s theorem with singularities . . . . . . . . . . . . . . . . . . . . 436 Planar domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Higher-dimensional problems . . . . . . . . . . . . . . . . . . . . . . . . 441 Homotopy invariance and applications . . . . . . . . . . . . . . . . . . 443 Gauss’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 Green’s formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 The classical Stokes’s theorem . . . . . . . . . . . . . . . . . . . . . . . 450 The star operator and the coderivative . . . . . . . . . . . . . . . . . . 451

Description:
The third and last volume of this work is devoted to integration theory and the fundamentals of global analysis. Once again, emphasis is laid on a modern and clear organization, leading to a well structured and elegant theory and providing the reader with effective means for further development. Thu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.