ebook img

Analysis, Estimation and Compensation of Mismatch Effects in A/D Converters PDF

266 Pages·2003·1.91 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis, Estimation and Compensation of Mismatch Effects in A/D Converters

Linko(cid:127)ping Studies in Science and Technology. Dissertations No. 811 Analysis, Estimation and Compensation of Mismatch E(cid:11)ects in A/D Converters Jonas Elbornsson Department of Electrical Engineering Linko(cid:127)pings universitet, SE{581 83 Linko(cid:127)ping, Sweden Linko(cid:127)ping 2003 Analysis, Estimation and Compensation of Mismatch E(cid:11)ects in A/D Converters (cid:13)c 2003 Jonas Elbornsson [email protected] http://www.control.isy.liu.se Division of Control & Communication, Department of Electrical Engineering, Linko(cid:127)pings universitet, SE{581 83 Linko(cid:127)ping, Sweden. ISBN 91-7373-621-X ISSN 0345-7524 Printed by Bokakademin AB, Link(cid:127)oping, Sweden 2003 This page is intentionally left blank. Abstract The trend in modern communication systems is to replace as much analog circuits as possible with digital ones, to decrease size, energy consumption and cost. An analog to digital converter (ADC) is the interface between the analog and digital parts. Replacing analog parts, such as mixers, with digital ones requires higher sampling rates. The bottleneck in a digital communication system is often the ADC. Requirements on low power consumption, small chip area and high sample ratesareoftencontradictorytorequirementsonhighaccuracyinthemanufacturing process. The traditional way to improve the accuracy is to calibrate the ADC before use. However, calibration is time consuming and costly. Furthermore, the errors usually change during the lifetime of the ADC due to, for instance, temperature variation and aging. This means that the ADC must be recalibrated at regular intervals. In this thesis, we investigate how the errors in an ADC can be estimated and compensatedforwhiletheADCisused. Theestimationmustthenbedonewithout any special calibration signal. Two di(cid:11)erent types of errors are discussed in this thesis. The (cid:12)rst type of error is static errors in the reference levels, caused by resistor mismatch. Two methods are proposed for estimation and correction of these errors. The most general method requires only that the amplitude distribution is smooth, while the other one requires knowledge of the amplitude distribution of the input signal but gives a little better performance. ThesecondtypeoferroroccursintimeinterleavedADCs, whereseveralADCs are used in parallel. Due to component mismatch, three di(cid:11)erent static errors appear: Time errors (static jitter), amplitude o(cid:11)set errors and gain errors. A method for estimation and compensation of these errors is proposed. The method requiresbasicallyonlythattheinputsignalisbandlimitedtotheNyquistfrequency for the system. Anotherwaytodecreasetheimpactofthemismatcherrorsinatimeinterleaved ADC is to randomize the selection of which order the ADCs should be used. This randomizationspreadsthedistortiontoamorenoiselikeshape. Howthemismatch errors a(cid:11)ect the spectrum of a randomly interleaved ADC is also analyzed in this thesis. Tocon(cid:12)rmthattheanalysisandestimationmethodsworkinpractisethemeth- ods are evaluated on both simulated data and data from real ADCs. i ii Acknowledgments Several persons have contributed to this thesis. First of all, I would like to thank mysupervisor,ProfessorFredrikGustafsson,forguidanceandsupportinthework that has lead to the thesis. I am also grateful to Professor Lennart Ljung for drafting me to the Control & Communication group in Linko(cid:127)ping. All the people in the Control & Communication group are gratefully acknowl- edged. Especially I want to thank M.Sc. Thomas Scho(cid:127)n and Lic.Eng. Rickard Karlsson who have proofread various parts of the thesis and given valuable com- ments and suggestions for improvement. During my graduate studies, I have had the opportunity to share ideas and discussions with the people at In(cid:12)neon Technologies Wireless Solutions Sweden AB and the Electronic Devices group at Linko(cid:127)ping University. Especially I want to thank Dr. Jan-Erik Eklund, Prof. Christer Svensson, Lic.Eng. Darius Jakonis and M.Sc. Kalle Folkesson for helping me understand how the A/D converters work and helping me with the measurements. I also want to thank M.Sc. Martin Anderson from Lund University for providing measurement data. This work was (cid:12)nancially supported by ECSEL (Excellence Center in Com- puterScienceandSystemsEngineeringinLinko(cid:127)ping)graduateschoolinLinko(cid:127)ping, which is gratefully acknowledged. iii iv Contents I 1 1 Introduction 3 1.1 Outline of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Outline of Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Published Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Background 9 2.1 Sample-and-hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 A/D Converter Structures . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Flash ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Pipelined ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Successive Approximation ADC . . . . . . . . . . . . . . . . . . 15 2.2.4 Sigma-Delta ADC . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.5 Integrating A/D Converters . . . . . . . . . . . . . . . . . . . . 18 2.2.6 Interleaved ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Speci(cid:12)cations of A/D Converters . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 DC Speci(cid:12)cations . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Amplitude O(cid:11)set . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 Time Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.5 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.6 Gain Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.7 Dynamic Speci(cid:12)cations . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 ADC Applications in Communication Systems . . . . . . . . . . . . . 26 2.4.1 Digital Subscriber Line Technology . . . . . . . . . . . . . . . . 27 2.4.2 Software Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 Blind Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.1 Reference level errors . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6.2 Mismatch errors in time interleaved ADCs . . . . . . . . . . . . 36 A Sample-and-hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 v vi Contents A.1 Nonlinearities in sample-and-hold . . . . . . . . . . . . . . . . . 37 A.2 Dynamic error correction methods . . . . . . . . . . . . . . . . 39 3 Mismatch Compensation of Static Nonlinearities in SA-ADC 41 3.1 A/D Converter Description . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.1 SA-ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.1.2 Binary Search Algorithm. . . . . . . . . . . . . . . . . . . . . . 43 3.1.3 Subranging Technique . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 Resistance Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.2 Subranging Mismatch . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Equalization with known Input Distribution . . . . . . . . . . . . . . 49 3.3.1 Assumptions and Notation. . . . . . . . . . . . . . . . . . . . . 49 3.3.2 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.3 Criterion Functions . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3.4 Amount of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.5 Parameter Update . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.6 Initial Value Estimation . . . . . . . . . . . . . . . . . . . . . . 58 3.3.7 Reference Level Estimation Algorithm . . . . . . . . . . . . . . 59 3.4 Equalization with Unknown Input Distribution . . . . . . . . . . . . 61 3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 Estimation Overview . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.3 Amplitude Distribution Estimation . . . . . . . . . . . . . . . . 61 3.4.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.5 Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5.1 Known Amplitude Distribution . . . . . . . . . . . . . . . . . . 65 3.5.2 Unknown Amplitude Distribution . . . . . . . . . . . . . . . . . 73 3.5.3 Subranging ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6.1 ADC Description . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6.2 Algorithm Modi(cid:12)cation . . . . . . . . . . . . . . . . . . . . . . 85 3.6.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.6.5 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . 90 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Time Interleaved A/D Converters 95 4.1 Notation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 O(cid:11)set Error Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1 Sinusoidal input. . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 Gain Error Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3.1 Sinusoidal input. . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4 Time Error Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.4.1 Sinusoidal signal . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Description:
better performance than the ADC. Therefore, when high frequency analog circuits are replaced by digital ones, the ADC becomes a bottleneck that limits how much analog circuitry that can be removed. Requirements on high speed, high accuracy, low cost and low power consumptions in ADCs are all
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.