ebook img

Analysis and Presentation of Experimental Results: With Examples, Problems and Programs PDF

530 Pages·2017·10.534 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis and Presentation of Experimental Results: With Examples, Problems and Programs

Undergraduate Lecture Notes in Physics Costas Christodoulides George Christodoulides Analysis and Presentation of Experimental Results With Examples, Problems and Programs Undergraduate Lecture Notes in Physics Undergraduate Lecture Notes in Physics (ULNP) publishes authoritative texts covering topicsthroughoutpureandappliedphysics.Eachtitleintheseriesissuitableasabasisfor undergraduateinstruction,typicallycontainingpracticeproblems,workedexamples,chapter summaries, andsuggestions for further reading. ULNP titles mustprovide at least oneof thefollowing: (cid:129) Anexceptionally clear andconcise treatment ofastandard undergraduate subject. (cid:129) Asolidundergraduate-levelintroductiontoagraduate,advanced,ornon-standardsubject. (cid:129) Anovel perspective oranunusual approach toteaching asubject. ULNPespeciallyencouragesnew,original,andidiosyncraticapproachestophysicsteaching at theundergraduate level. ThepurposeofULNPistoprovideintriguing,absorbingbooksthatwillcontinuetobethe reader'spreferred reference throughout theiracademic career. Series editors Matthew Deady Physics Program, Bard College, Annandale-on-Hudson, NY, USA Morten Hjorth-Jensen Department of Physics, University of Oslo, Oslo, Norway Michael Inglis SUNY Suffolk County Community College, Long Island, NY, USA Heinz Klose Humboldt University, Oldenburg, Niedersachsen, Germany More information about this series at http://www.springer.com/series/8917 Costas Christodoulides George Christodoulides (cid:129) Analysis and Presentation of Experimental Results With Examples, Problems and Programs 123 Costas Christodoulides George Christodoulides Department ofPhysics, Schoolof Applied CentreValibel, Institute forLanguage MathematicalandPhysical Sciences andcommunication National Technical University of Athens Universitécatholique deLouvain Zografou,Athens GR15780 Louvain-la-Neuve Greece Belgium Code and examples for the book “Analysis and Presentation of Experimental Results”: https://github.com/aperbook/APER. ISSN 2192-4791 ISSN 2192-4805 (electronic) Undergraduate Lecture Notesin Physics ISBN978-3-319-53344-5 ISBN978-3-319-53345-2 (eBook) DOI 10.1007/978-3-319-53345-2 LibraryofCongressControlNumber:2017932001 Translation from the Greek language edition: Amάktrη jai Paqotrίarη Peiqalasijώm Aposekerlάsxm,©N.T.U.A.UniversityPress,Athens2009.AllRightsReserved. ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Theimportanceoftheanalysisandthepresentationofexperimentaldatacannotbe overstated.Goodexperimentalresultsmayberendereduselessbyfailingtokeepto certainrulesintheirpresentation,either toanaudienceorinwrittenform.Itisour intention to present in this book these methods at an introductory university level. Those working in the experimental sciences, but also anyone involved in the analysis of numerical data, may find the book useful. The book is intended to be used as a textbook and this has determined its characteristics:Thetheoreticalproofsaregiveninconsiderabledetail,manyfigures are used, as well as a large number of examples and problems to be solved by the reader.Thevastmajorityoftheexamplesaresolvedusingfoursoftwarepackages: Excel®, Origin®, Python and R. Most of the problems may also be solved using these programs. Excel® is used due to its wide availability as a program for data analysis, Origin® because it is an excellent program for creating graphical pre- sentations of data. Python and R are used because they are free, open-source programming languages, widely usedin data science. Reference to these programs is made using the symbols [E], [O], [P] and [R], respectively. The same symbols also indicate that a certain problem may be solved using the corresponding program. ThebookmaybeusedasatextbookforanintroductorycourseonDataAnalysis and Presentation. It is hoped that it will provide a useful addition to the existing literature. Athens, Greece Costas Christodoulides January 2017 George Christodoulides v Contents 1 Basic Statistical Concepts.. ..... .... .... .... .... .... ..... .. 1 1.1 Tables, Distributions and Histograms.. .... .... .... ..... .. 1 1.2 Probability Density... ..... .... .... .... .... .... ..... .. 14 1.3 Mean Value.... .... ..... .... .... .... .... .... ..... .. 15 1.4 Measures of Dispersion .... .... .... .... .... .... ..... .. 18 1.4.1 Range.. .... ..... .... .... .... .... .... ..... .. 18 1.4.2 Deviation from the Mean and Mean Absolute Deviation from the Mean. .... .... ..... .. 19 1.4.3 Standard Deviation. .... .... .... .... .... ..... .. 20 2 Measurement Errors . .... ..... .... .... .... .... .... ..... .. 39 2.1 Errors of Measurements.... .... .... .... .... .... ..... .. 39 2.1.1 Accidental or Random Errors. .... .... .... ..... .. 39 2.1.2 Systematic Errors .. .... .... .... .... .... ..... .. 40 2.1.3 Personal Errors.... .... .... .... .... .... ..... .. 42 2.1.4 Occasional Errors .. .... .... .... .... .... ..... .. 42 2.1.5 The Errors in Reading the Indications of Instruments..... .... .... .... .... .... ..... .. 43 2.2 Errors in Compound Quantities .. .... .... .... .... ..... .. 45 2.2.1 Error in a Sum or a Difference.... .... .... ..... .. 46 2.2.2 Error in a Product.. .... .... .... .... .... ..... .. 48 2.2.3 Error in a Power... .... .... .... .... .... ..... .. 48 2.2.4 Error in a Quotient. .... .... .... .... .... ..... .. 49 2.2.5 The Use of Differentials . .... .... .... .... ..... .. 50 3 A Thought Experiment.... ..... .... .... .... .... .... ..... .. 57 3.1 The Thought Experiment... .... .... .... .... .... ..... .. 57 Reference... .... .... .... ..... .... .... .... .... .... ..... .. 75 4 The Statistical Analysis of Experimental Results .... .... ..... .. 77 4.1 The Mean and the Dispersion of the Results of Measurements .... ..... .... .... .... .... .... ..... .. 77 vii viii Contents 4.2 The Standard Deviations ... .... .... .... .... .... ..... .. 80 4.2.1 The Standard Deviation of the Measurements. ..... .. 80 4.2.2 The Standard Deviation of the Mean ... .... ..... .. 90 4.2.3 The Relationship Between r and r .... .... ..... .. 93 x 4.2.4 The Relationship Between sx and r and rx... ..... .. 94 4.3 The Standard Deviation of the Standard Deviation of the Mean.... .... ..... .... .... .... .... .... ..... .. 98 4.4 Information Derived from the Measurement of x and sx .... .. 100 4.4.1 The Mean Value of the Results of the Measurements and Its Standard Deviation ... .. 100 4.4.2 The Statistical Distribution of the Results of the Measurements.... .... .... .... .... ..... .. 103 4.4.3 Statistical Estimates for the Mean.. .... .... ..... .. 115 4.4.4 Summary of the Method of Analysis of the Results. .. 116 References .. .... .... .... ..... .... .... .... .... .... ..... .. 121 5 The Presentation of Numerical Results.... .... .... .... ..... .. 123 5.1 Significant Figures and Rounding of Numbers... .... ..... .. 123 5.2 The Presentation of a Numerical Result of a Series of Measurements .. .... ..... .... .... .... .... .... ..... .. 124 5.3 The Number of Significant Figures Used in the Presentation of Numerical Results . ..... .... .... .... .... .... ..... .. 126 5.4 The International System of Units (S.I.) and the Rules of Its Use.. .... .... ..... .... .... .... .... .... ..... .. 129 5.5 Recommendations on the Notation Used for Mathematical Constants, Algebraic Parameters, Variables, Indices, Mathematical Functions, Operators, Physical Units, Elementary Particles and Isotopes .... .... .... .... ..... .. 134 Reference... .... .... .... ..... .... .... .... .... .... ..... .. 136 6 The Propagation of Errors. ..... .... .... .... .... .... ..... .. 137 6.1 The Combination of Two Series of Measurements of the Same Physical Magnitude . .... .... .... .... ..... .. 137 6.1.1 The Mean x of All the Measurements... .... ..... .. 138 6.1.2 The Standard Deviation sx of All the Measurements. .. 138 6.1.3 The Standard Deviation of the Mean r x of All the Measurements. .... .... .... .... ..... .. 139 6.2 The Mean and the Standard Deviation of a Function of Measured Quantities .... .... .... .... .... .... ..... .. 141 6.2.1 The Mean and the Standard Deviations of a Function of One Variable .... .... .... ..... .. 141 6.2.2 The Mean and the Standard Deviation of an Algebraic Sum.... .... .... .... .... ..... .. 146 Contents ix 6.2.3 The Mean and the Standard Deviations of a General Function of Many Variables.... ..... .. 149 6.2.4 Another Approach to the Evaluation of the Mean and the Standard Deviation of a Compound Quantity .... ..... .... .... .... .... .... ..... .. 155 6.3 The Error in Qðx; y; z;...Þ Due to the Errors in x; y; z;..... .. 157 6.3.1 The Case of Asymmetrical Errors.. .... .... ..... .. 158 7 The Three Basic Probability Distributions . .... .... .... ..... .. 163 7.1 Histograms of Experimental Probabilities... .... .... ..... .. 163 7.2 The Binomial or Bernoulli Distribution .... .... .... ..... .. 166 7.2.1 The Normalization of the Binomial Distribution.... .. 178 7.2.2 The Mean Value of x for the Binomial Distribution. .. 178 7.2.3 The Standard Deviation of x from the Mean for a Binomial Distribution... .... .... .... ..... .. 179 7.3 The Poisson Distribution ... .... .... .... .... .... ..... .. 180 7.3.1 The Normalization of the Poisson Distribution..... .. 188 7.3.2 The Mean Value of x for the Poisson Distribution.. .. 188 7.3.3 The Standard Deviation from the Mean of x for the Poisson Distribution .. .... .... .... ..... .. 188 7.4 The Normal or Gaussian Distribution.. .... .... .... ..... .. 192 7.4.1 The Normalization of the Gaussian Distribution.... .. 200 7.4.2 The Mean Value of x for the Gaussian Distribution. .. 200 7.4.3 The Standard Deviation of x from the Mean for the Gaussian Distribution . .... .... .... ..... .. 200 7.4.4 Testing Whether a Set of Data Has a Gaussian Distribution.. ..... .... .... .... .... .... ..... .. 201 7.4.5 The Gaussian Distribution and the Phenomenon of Diffusion . ..... .... .... .... .... .... ..... .. 209 References .. .... .... .... ..... .... .... .... .... .... ..... .. 214 8 The Statistics of Radioactivity... .... .... .... .... .... ..... .. 215 8.1 The Behavior of Large Samples. The Law of Radioactivity.. .. 215 8.2 Nuclear Disintegrations and the Binomial Distribution. ..... .. 218 8.3 Radioactivity and the Poisson Distribution.. .... .... ..... .. 231 8.4 The Counting Rate of Nuclear Disintegrations and Its Error . .. 234 Reference... .... .... .... ..... .... .... .... .... .... ..... .. 238 9 Elements from the Theory of Errors.. .... .... .... .... ..... .. 239 9.1 The Normal or Gaussian Law of Errors.... .... .... ..... .. 239 9.2 The Lyapunov Central Limit Theorem. .... .... .... ..... .. 244 9.3 The Best Estimate that May Be Made for the Real Value of a Magnitude, Based on the Results of N Measurements of It ... .... .... .... .... .... ..... .. 253 x Contents 9.4 The Weighting of Values... .... .... .... .... .... ..... .. 255 9.5 The Joint Probability Density for Two Random Variables... .. 272 9.6 The Probability Density of the Sum of Two Random Variables.. .... .... .... .... .... ..... .. 277 9.6.1 TheProbabilityDensityoftheSumofTwoNormally Distributed Random Variables .... .... .... ..... .. 280 References .. .... .... .... ..... .... .... .... .... .... ..... .. 289 10 Comparison and Rejection of Measurements... .... .... ..... .. 291 10.1 The Problem of the Rejection of Measurements.. .... ..... .. 291 10.2 Chauvenet’s Criterion. ..... .... .... .... .... .... ..... .. 293 10.3 Comments Concerning the Rejection of Measurements ..... .. 296 10.4 Comparison of the Means of Two Series of Measurements of the Same Quantity. ..... .... .... .... .... .... ..... .. 298 11 The Method of Least Squares ... .... .... .... .... .... ..... .. 301 11.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 301 11.2 The Theoretical Foundation of the Method of Least Squares. .. 302 11.3 The Fitting of Curves to Experimental Points ... .... ..... .. 305 11.3.1 Straight Line. ..... .... .... .... .... .... ..... .. 305 11.3.2 Polynomial .. ..... .... .... .... .... .... ..... .. 327 11.3.3 Other Curves. ..... .... .... .... .... .... ..... .. 340 11.3.4 The Reduction of Non-linear Relations to Linear... .. 342 11.4 The Choice of the Optimum Function Fitted to a Set of Experimental Results . .... .... .... .... ..... .. 346 11.5 The Fractional Absolute Deviation of the Experimental Values from the Values of the Curve.. .... .... .... ..... .. 346 11.6 Smoothing . .... .... ..... .... .... .... .... .... ..... .. 348 11.7 The Error in a Value Read off a Smoothed Curve.... ..... .. 354 11.8 The Regression Line and the Coefficient of Correlation..... .. 357 11.9 The Use of the Method of Least Squares in the Solution of a System of Overdetermined Linear Equations .... ..... .. 362 11.9.1 Equations in Two Variables .. .... .... .... ..... .. 363 11.9.2 Equations in Three Variables . .... .... .... ..... .. 368 References .. .... .... .... ..... .... .... .... .... .... ..... .. 375 12 Graphs. .... .... .... .... ..... .... .... .... .... .... ..... .. 377 12.1 Introduction .... .... ..... .... .... .... .... .... ..... .. 377 12.2 The Axes.. .... .... ..... .... .... .... .... .... ..... .. 378 12.2.1 Linear Scales ..... .... .... .... .... .... ..... .. 378 12.2.2 Logarithmic Scales. .... .... .... .... .... ..... .. 380 12.2.3 Polar Diagrams.... .... .... .... .... .... ..... .. 384 12.2.4 Other Matters Relating to the Axes and the Scales of Graphs ... ..... .... .... .... .... .... ..... .. 387 12.2.5 Legends of the Figure, Labels of the Axes and the Units of Physical Magnitudes... .... ..... .. 391

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.