ANALYSIS AND OPTIMIZATION OF A CRASHWORTHY HELICOPTER SEAT by MHASKAR NAUMAN HASAN ABDUL LATIF Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON May 2008 Copyright © by Nauman Mhaskar 2008 All Rights Reserved ACKNOWLEDGEMENTS I would like to express my deep sense of gratitude to my esteemed advisor Dr. Kent Lawrence, for his patience, guidance and assistance during my thesis work. This thesis would not have been possible without his unlimited support and encouragement and I am indebted to him for the unconditional support that he provided during difficult times encountered. I would also like to mention a special thanks to Dr. Wen S. Chan and Dr. B. P. Wang for helping me clear my doubts whenever required, and also for serving as members on my committee. March 14, 2008 iii ABSTRACT ANALYSIS AND OPTIMIZATION OF A CRASHWORTHY HELICOPTER SEAT Nauman Mhaskar, M.S. The University of Texas at Arlington, 2008 Supervising Professor: Dr. Kent L. Lawrence The objective of a crashworthy seat is to improve the survivability of occupants (cockpit and cabin) in helicopter crashes. All modern helicopter seats are equipped with an energy absorber to reduce lumbar spine load during crash landing. The main objective of this research is to carry out the structural analysis and optimization of a helicopter crashworthy troop seat assembly using finite element methods. The transient dynamic nonlinear finite element analysis helps in identifying whether the seat structure survives in a crash landing situation, and optimization helps in reducing the weight of the crashworthy seat. The seat is analyzed using a combination of MATLAB and the Flexible dynamic module of ANSYS Workbench 11.0, while the optimization will be carried out using Design of Experiments from inbuilt ANSYS DesignXplorer. The analysis points out the weakest links in the crashworthy seat structure and optimization is then carried to make it failsafe as well as reduce the weight of the assembly. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………………………. iii ABSTRACT………………………………………………………………………………………. iv LIST OF FIGURES……….………………………………………….………………………….. vii LIST OF TABLES………………………………………………………………………………... x Chapter Page 1. INTRODUCTION.…………….……….………………………..………………..….. 1 1.1 The Need for a Crashworthy Helicopter Seat……….…………………. 1 1.2 Crash Energy Absorption Mechanisms…………..……………………… 4 1.3 Standards Used for Crashworthy Seats………....……………………… 6 1.4 Objective and Approach………………………………………………….. 9 2. SEAT DYNAMIC MODEL………………….……………………………….………. 11 2.1 Design Parameters………………………...….……….………………….. 11 2.2 Mathematical Model………………………………….………………….... 15 2.3 MATLAB and ANSYS Simulations…………….……………………….… 17 2.3.1 MATLAB Simulation…………………………..…….……….… 18 2.3.2 ANSYS Simulation…………………..……………………….… 20 3. IMPACT SIMULATION IN ANSYS….……………………………………………… 23 3.1 Seat Characteristics…………………………………………………..…… 23 3.2 Model Setup and Analysis Approach…………………………..………… 32 3.3 Results……………………………………………………………………… 42 3.3.1 Deformation Results…………………………..…….……….… 47 3.3.2 Force Convergence...........................................................… 48 4. OPTIMIZATION………………………..……………………………………………. 52 v 4.1 Design of Experiments (DOE)………………..………………………….. 52 4.2 Goal Driven Optimization (GDO)......................………………………… 53 4.3 Setup and Results……………………….………………………………… 54 4.4 Validation…………………………………………………………………… 60 5. CONCLUSIONS AND RECOMMENDATIONS…..………………………………. 62 5.1 Introduction…………………………………..……………………………. 62 5.1.1 Conclusions………………………………………………….... 62 5.1.2 Recommendations…………………………………………..… 63 APPENDIX A. MATLAB M-FILES….………………………………………………………………... 64 B. ANSYS APDL FILE………………………………………………………………..… 70 REFERENCES………………………………………………………………………………….… 76 BIOGRAPHICAL INFORMATION………………………………………………………………. 78 vi LIST OF FIGURES Figure Page 1.1 Crash energy absorption components…………..………………………….. 3 1.2 Typical Load-deflection curve for a FLEA………..…………………………. 5 1.3 Deceleration-time relationship for a military troop seat……….…………… 7 2.1 Seat-Occupant configuration…………………………………………………. 10 2.2 Typical load-stroke length showing stroke length……….………………….. 11 2.3 Typical and ideal crushing behavior …..……………………………………. 12 2.4 Load vs deflection for a Gr/Ep tube ……….………………………………… 13 2.5 Ideal load-deflection curve …………………………………..………………. 13 2.6 Deceleration-time pulse for Military troop seats …….…………………….. 14 2.7 SDOF system responding with motion u(t) to base motion z(t)…..………. 15 2.8 Free body diagram ……….…………………………………………………… 16 2.9 MATLAB Results – Acceleration vs Time …………………….……………. 18 2.10 MATLAB Results – Velocity vs Time ……………………………………….. 18 2.11 MATLAB Results – Displacement vs Time …………………………………. 19 2.12 ANSYS Result – Displacement vs Time …..……………………….………. 21 3.1 Image of the troop seat ................................................................……….. 23 3.2 Overall dimensions of troop seat ……………………………………………. 24 3.3 Parametric model of seat assembly ….……………………………………… 25 3.4 Exploded view of assembly ……………………………………….…………. 26 3.5 Co-ordinate system and nonlinear spring elements……..…………………. 27 3.6 Scoped surface on Upperconnection………..………………………………. 30 3.7 Curve indicating the relation between the load and tensility of the seat belt …………………………………..………………………………………….. 31 vii 3.8 Load deflection curve of seat belt ……………………………………………. 31 3.9 Scoped surfaces on Upper and Lower Rings ……………………………… 32 3.10 Experimental set-up …………………………………………………………… 33 3.11 Loads and boundary conditions (front view)………….……..………………. 35 3.12 Loads and boundary conditions (back view)….…………….……………….. 36 3.13 Acceleration vs time input ……………………………………………………. 37 3.14 Mesh refinement using spheres of influence………..………………………. 39 3.15 Refined mesh in upper section of seat…. …………..………………………. 39 3.16 Refined mesh in lower section of seat…. …………..………………………. 40 3.17 General layout of analysis procedure….. …………..………………………. 41 3.18 Equivalent Von-Mises stress plot for complete assembly ………………… 42 3.19 Plot of stress vs time for assembly............………………….………………. 43 3.20 Equivalent Von-Mises stress plot for cushion frame …………………..…… 43 3.21 Equivalent Von-Mises stress plot for bolt …………..………………………. 44 3.22 Stress vs time for lower ring ……..…………………………………………… 44 3.23 Stress vs time plot for upper ring …………………………….………………. 45 3.24 Equivalent Von-Mises stress plot for lower rings ………………………….. 45 3.25 Equivalent Von-Mises stress plot for upper ring …………………..………. 46 3.26 Equivalent Von-Mises stress plot for I-frame….. …………………………… 46 3.27 Equivalent Von-Mises stress plot for upper connection….. ………………. 47 3.28 Total deformation plot of seat assembly .……………………………..…….. 48 3.29 Force convergence plot ………………………………………………………. 51 4.1 Input displacement vs time profile …………………………………………… 54 4.2 Applied loads and boundary condition……………………….………………. 55 4.3 Equivalent Von-Mises stress plot for upper connection …….…………….. 55 4.4 Parameters selected for optimization ….……………………………………. 56 viii 4.5 Response plot for upperconnection width ………………..………………… 57 4.6 Response plot for upperconnection thickness ……………..………………. 58 4.7 Response plot for upperconnection width ……………………..…………… 58 4.8 Parameter goals……………………………………………….………………. 59 4.9 Results from ANSYS DesignXplorer goal driven optimization…….……… 59 4.10 Equivalent Von-Mises stress plot for optimized seat assembly …….……. 60 4.11 Equivalent Von-Mises stress plot for optimized upper connection ……..… 61 ix LIST OF TABLES Table Page 1.1 Number of fatalities …………………………………………………….……… 1 1.2 Static and dynamic test requirements for crashworthy seats …………….. 8 2.1 Weight distribution of U.S. Army male aviators ………………..…………… 12 2.2 Force vs deflection values………………………… ……………..…………… 21 3.1 Material Properties……………………………………..……………….……… 26 3.2 Materials Used ……………………………..………………………………….. 28 3.3 Recommended preload value …………………………..…….……………… 29 3.4 Step size settings……………. …………………………..…….……………… 38 3.5 Breakup of number of elements............................................……………… 38 4.1 Dimensions before and after optimization ………………………..………… 59 4.2 Reduction in mass and volume ……………………………………….……… 60 x
Description: