Progress in Mathematics Volume 185 Series Editors Hyman Bass Joseph Oesterle Alan Weinstein J acques Faraut Soji Kaneyuki Adam Koranyi Qi-keng Lu GuyRoos Analysis and Geometry on Complex Homogeneous Domains Springer Science+Business Media, LLC Jacques Faraut Soji Kaneyuki Institut de Mathematiques Department of Mathematics Universite Pierre et Marie Curie Sophia University F-75252 Paris Chiyoda-ku, Tokyo 102-8554 France Japan Adam Korănyi Qi-keng Lu Dept. Mathematics & Computer Science Institute of Mathematics H.H. Lehman College Academia Sinicia Bronx, NY 10468-1589 Beijing 100080 USA China Guy Roos Departement de Matbematiques Universite de Poitiers F-86022 Poitiers Cedex France Ubrary of Congress Cataloging-in-Publication Data Analysis and geometry on complex homogeneous domains / Jacques Faraut ... [et aL]. p. cm. - (Progress in mathematics ; v. 185) Includes bibliographical references and index. ISBN 978-1-4612-7115-4 ISBN 978-1-4612-1366-6 (eBook) DOI 10.1007/978-1-4612-1366-6 1. Functions of several complex variables. 2. Mathematical analysis. 3. Geometry. 1. Faraut, Jacques, 1940- II. Progress in mathematics (Boston, Mass.); voI. 185. QA331.7.A5 2000 99-055697 515'.94-<1c21 CIP AMS Subject Classifications: Primary-32MlO, 32M15, 32A37, 22E46, 43A85 Secondary-32-02,22-01,22-02 Printed on acid-free paper. ©2000 Springer Science+Business Media New York Originally published by Birkhliuser Boston in 2000 Softcover reprint of the hardcover 1s t edition 2000 Chinese Edition, ©Science Press Beijing AII rights reserved. This work may not be translated or copied in whole or in part without the written permissionofthepublisher Springer Science+Business Media, LLC, except forbrief excerpts in connection with reviews or scholarlyanalysis. Use in connection with any form of information storage and retrieval, electronic adaptat ion, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. ISBN 978-1-4612-7115-4 SPIN 10728121 Typeset by Guy Roos in Jt\TEX, 9 8 765 4 3 2 1 Contents Preface xi Part I Function Spaces on Complex Semi-groups by Jacques Faraut 1 Introduction 3 I Hilbert Spaces of Holomorphic Functions 5 Ll Reproducing kernels . . . . . . . . . . . . . . . .. 5 1.2 Invariant Hilbert spaces of holomorphic functions. 15 II Invariant Cones and Complex Semi-groups 19 ILl Complex semi-groups. . . . . . . . . . . . 19 11.2 Invariant cones in a representation space. 21 11.3 Invariant cones in a simple Lie algebra 26 III Positive Unitary Representations 33 III.1 Self-adjoint operators ...... 33 III.2 Unitary representations ..... 38 III.3 Positive unitary representations . 41 vi Contents IV Hilbert Function Spaces on Complex Semi-groups 45 IV.1 Schur orthogonality relations . . . . . . . . . . . 45 IV.2 The Hardy space of a complex semi-group. . . . 53 IV.3 The Cauchy-Szego kernel and the Poisson kernel 59 IV.4 Spectral decomposition of the Hardy space 62 q V Hilbert Function Spaces on SL(2, 65 q V.l Complex Olshanski semi-group in SL(2, 65 V.2 Irreducible positive unitary representations 67 V.3 Characters and formal dimensions of the represen- tations 7rm . . . . . . . • . . . . . . . . . . . . . • •. 73 V.4 Bi-invariant Hilbert spaces of holomorphic functions 76 V.5 The Hardy space . . 78 V.6 The Bergman space .................. 79 VI Hilbert Function Spaces on a Complex Semi-simple Lie Group 83 Vl.l Bounded symmetric domains . . . . . . . . 83 VI.2 Irreducible positive unitary representations 88 VI.3 Characters and formal dimensions ..... 96 VI.4 Bi-invariant Hilbert spaces of holomorphic functions 98 References 99 Part II Graded Lie Algebras and Pseudo-hermitian Symmetric Spaces by Soji Kaneyuki 103 Introduction 105 I Semisimple Graded Lie Algebras 107 1.1 Root theory of real semisimple Lie algebras .107 1.2 Semi simple graded Lie algebras .111 1.3 Example. .116 1.4 Tables ....... .119 II Symmetric R-Spaces 127 11.1 Symmetric R-spaces and their noncom pact duals .127 11.2 Sylvester's law of inertia in simple GLA's .... .133 Contents vii II.3 Generalized conformal structures and causal structures . . . . . . . . . . . . . . . . . 141 III Pseudo-Hermitian Symmetric Spaces 151 III.1 Pseudo-Hermitian spaces and nonconvex Siegel domains . . . . . . . . . . . . . . . . . . . . .. . 151 III.2 Simple reducible pseudo-Hermitian symmetric spaces . . . . . . . . . . . . . . . . . . . . . . . . 166 References 179 Part III Function Spaces on Bounded Symmetric Domains by Adam K oranyi 183 Introduction 185 I Bergman Kernel and Bergman Metric 187 en . . . . . . . . . . . . 1.1 Domains in .187 1.2 Bergman kernel, reproducing kernels .188 1.3 The Bergman metric . . . . . . . . . .190 II Symmetric Domains and Symmetric Spaces 193 11.1 Basic facts, definitions ..... .193 11.2 Riemannian symmetric spaces . .194 II.3 Theory of oiLa's . . . . . . . . .196 11.4 OiLa's of bounded symmetric domains .197 11.5 Cartan subalgebras . . . . . . . . . . . .200 III Construction of the Hermitian Symmetric Spaces 203 III. 1 The Borel imbedding theorem . . . 203 111.2 The Harish-Chandra realization . . 205 111.3 Remarks on classification .... . 209 IV Structure of Symmetric Domains 211 IV.1 Restricted root system, boundary orbits . 211 IV.2 Decomposition under the Cayley transform . 217 viii Contents V The Weighted Bergman Spaces 225 V.l Analysis on symmetric domains . .225 V.2 Decomposition under K ..... .230 V.3 Spaces of holomorphic functions .234 VI Differential Operators 243 VLl Properties of b.s . . . . . . . . . . . .243 VL2 Invariant differential operators on 0 .246 VL3 Further results on JI)(O) .248 VI.4 Extending Do to p+ .251 VII Function Spaces 257 VILI The holomorphicdiscrete series . . . . . . . . . . . . 257 VII.2 Analytic continuation of the holomorphic discrete series. . . . . . . . . . . . . . . . . . . . . . 259 VIL3 Explicit formulas for the inner products . . 264 VII.4 Lq-spaces and Bergman type projections . 267 VII.5 Some questions of duality . 270 VII.6 Further results . . . . . . . 274 References 277 Part IV The Heat Kernels of Non Compact Symmetric Spaces by Qi-keng Lu 283 I Introduction 285 II The Laplace-Beltrami Operator in Various Coordinates 303 III The Integral Transformations 321 IV The Heat Kernel of the Hyperball RIR(m, n) 337 V The Harmonic Forms on the Complex Grassmann Manifold 351 VI The Horo-hypercirde Coordinate of a Complex Hyperball 365 Contents ix VII The Heat Kernel of'R]](m) 381 VIII The Matrix Representation of NIRGSS 393 References 423 Part V Jordan Triple Systems by Guy Roos 425 Introduction 427 I Polynomial Identities 429 I.1 Definition of Jordan triple systems .429 L2 Identities of minimal degree . . . . .431 L3 Jordan representations and duality .435 104 The fundamental identity of degree 7 . .440 L5 The Bergman operator . . . . . . . . . .441 II Jordan Algebras 451 11.1 Jordan algebras arising from a JTS . .451 11.2 Identities in a Jordan algebra .... .452 11.3 The JTS associated to a Jordan algebra .458 III The Quasi-inverse 461 111.1 Quasi-invertibility in a Jordan algebra .461 I1L2 Quasi-invertibility in a JTS . . .466 I1L3 Identities for the quasi-inverse . .469 IlIA Differential equations . .470 I1L5 Addition formulas ...... . .472 IV The Generic Minimal Polynomial 475 IV.1 Unital Jordan algebras . .475 IV.2 General Jordan algebras .486 IV.3 Jordan triple systems .. .488 V Tripotents and Peirce Decomposition 497 V.1 Tripotent elements .... . .497 V.2 Peirce decomposition ........ . .498 V.3 Orthogonality of tripotents .... . .501 VA Simultaneous Peirce decomposition. .503 x Contents VI Hermitian Positive JTS 507 VI.1 Positivity ...... . .507 VI.2 Spectral decomposition. .510 VI.3 Automorphisms . . . . . .518 VIA The spectral norm ... .523 VI.5 Classification of Hermitian positive JTS .525 VII Further Results and Open Problems 529 VII.1 Schmid decomposition . . . . . . . . . . . . .. . 529 VII.2 Compactification of an hermitian positive JTS . 530 VII.3 Projective imbedding. . 531 VilA Volume computations . 531 VII.5 Some open problems .534 References 535 Index 537