ebook img

Analysis and Control of Complex Dynamical Systems: Robust Bifurcation, Dynamic Attractors, and Network Complexity PDF

215 Pages·2015·7.776 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analysis and Control of Complex Dynamical Systems: Robust Bifurcation, Dynamic Attractors, and Network Complexity

Mathematics for Industry 7 Kazuyuki Aihara Jun-ichi Imura Tetsushi Ueta E ditors Analysis and Control of Complex Dynamical Systems Robust Bifurcation, Dynamic Attractors, and Network Complexity Mathematics for Industry Volume 7 Editor-in-Chief MasatoWakayama(KyushuUniversity,Japan) ScientificBoardMembers RobertS.Anderssen(CommonwealthScientificandIndustrialResearchOrganisation,Australia) HeinzH.Bauschke(TheUniversityofBritishColumbia,Canada) PhilipBroadbridge(LaTrobeUniversity,Australia) JinCheng(FudanUniversity,China) MoniqueChyba(UniversityofHawaiiatMānoa,USA) Georges-HenriCottet(JosephFourierUniversity,France) JoséAlbertoCuminato(UniversityofSãoPaulo,Brazil) Shin-ichiroEi(HokkaidoUniversity,Japan) YasuhideFukumoto(KyushuUniversity,Japan) JonathanR.M.Hosking(IBMT.J.WatsonResearchCenter,USA) AlejandroJofré(UniversityofChile,Chile) KerryLandman(TheUniversityofMelbourne,Australia) RobertMcKibbin(MasseyUniversity,NewZealand) GeoffMercer(AustralianNationalUniversity,Australia)(Deceased,2014) AndreaParmeggiani(UniversityofMontpellier2,France) JillPipher(BrownUniversity,USA) KonradPolthier(FreeUniversityofBerlin,Germany) WilSchilders(EindhovenUniversityofTechnology,TheNetherlands) ZuoweiShen(NationalUniversityofSingapore,Singapore) Kim-ChuanToh(NationalUniversityofSingapore,Singapore) EvgenyVerbitskiy(LeidenUniversity,TheNetherlands) NakahiroYoshida(TheUniversityofTokyo,Japan) Aims&Scope The meaning of “Mathematics for Industry” (sometimes abbreviated as MI or MfI) is different fromthatof“MathematicsinIndustry”(orof“IndustrialMathematics”).Thelatterisrestrictive:it tendstobeidentifiedwiththeactualmathematicsthatspecificallyarisesinthedailymanagement andoperationofmanufacturing.Theformer,however,denotesanewresearchfieldinmathematics thatmayserveasafoundationforcreatingfuturetechnologies.Thisconceptwasbornfromthe integrationandreorganizationofpureandappliedmathematicsinthepresentdayintoafluidand versatileformcapableofstimulatingawarenessoftheimportanceofmathematicsinindustry,as well as responding to the needs of industrial technologies. The history of this integration and reorganizationindicatesthatthisbasicideawillsomedayfindincreasingutility.Mathematicscan beakeytechnologyinmodernsociety. Theseriesaimstopromotethistrendby(1)providingcomprehensivecontentonapplications of mathematics, especially to industry technologies via various types of scientific research, (2) introducingbasic,useful,necessaryandcrucialknowledgeforseveralapplicationsthroughcon- crete subjects, and (3) introducing new research results and developments for applications of mathematicsintherealworld.Thesepointsmayprovidethebasisforopeninganewmathematics- orientedtechnologicalworldandevennewresearchfieldsofmathematics. More information about this series at http://www.springer.com/series/13254 Kazuyuki Aihara Jun-ichi Imura (cid:129) Tetsushi Ueta Editors Analysis and Control of Complex Dynamical Systems Robust Bifurcation, Dynamic Attractors, and Network Complexity 123 Editors Kazuyuki Aihara Tetsushi Ueta The Universityof Tokyo Tokushima University Tokyo Tokushima Japan Japan Jun-ichiImura TokyoInstituteof Technology Tokyo Japan ISSN 2198-350X ISSN 2198-3518 (electronic) Mathematics forIndustry ISBN 978-4-431-55012-9 ISBN 978-4-431-55013-6 (eBook) DOI 10.1007/978-4-431-55013-6 LibraryofCongressControlNumber:2015933364 SpringerTokyoHeidelbergNewYorkDordrechtLondon ©SpringerJapan2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerJapanKKispartofSpringerScience+BusinessMedia(www.springer.com) Preface Recent advanced communication and information technologies have attracted our attention to developments of highly dependable, strongly resilient, and energy- efficientsystemswithapplicationstointelligenttransportationsystems(ITS),smart grids, high-level medical diagnosis/treatment systems, and so on. Such systems in general involve complex behavior induced by interactions among subsystems, and complex network structure as well as a large number of components. We need to analyzesuchcomplexbehaviorforcapturingtheintrinsicpropertiesofthesystems and to design control systems for realizing the desirable behavior. Both dynamical systemstheoryandcontrolsystemstheorywillplayindispensableandcentralroles in addressing such issues. Dynamical systems theory originated from Newton’s motion equations in the seventeenthcentury,andhasbeenfoundedbyPoincaré’sgreatcontributionslatein the nineteenth century. After that, various mathematical methods such as ergodic theory, stability theory of periodic solutions including equilibrium points, and bifurcationtheoryfornonlineardynamicalsystemshavebeendeveloped,andsince the late 1970s, they have been extended to different research topics on more complexphenomena/controlsuchasbifurcationstochaos,chaoscontrol,andchaos synchronization. Ontheotherhand,JamesWatt’ssteamengineattheindustrialrevolutioninthe eighteenthcenturyhasopenedthegatetofeedbackcontrol,andMaxwell’sstability analysis late in the nineteenth century, which theoretically analyzed the instability phenomena of steam engines, was the occasion of developing control systems theory.Continuinguponclassicalcontroltheorydealingwithcontrolsystemdesign mainly in the frequency domain since the 1920s, modern control theory has been advancingsincethe1960s,whichenablesustoanalyzecontrollability/observability and to design optimal control by means of state equations in the time domain. Moreover,adeepunderstandingonrobustnessofthesystembehaviorfordynamic uncertainty including unmodeled dynamics in addition to parametric uncertainty has been gained, and then robust control theory has been developed since the 1980s. v vi Preface The above two research fields, however, have been developing almost inde- pendently so far, although there have been several successes to be related in both fields such as Pontryagin’s maximum principle and R.E. Kalman’s pioneering contribution on chaos and control theory. The main focus in dynamical systems theory is nonlinear autonomous dynamics with a kind of unstable phenomena like bifurcations and chaos, while the focus in control systems theory is feedback sta- bilization of linear non-autonomous dynamics at an equilibrium point. This moti- vatesustodevelopanewparadigmonanalysisandcontrolofcomplex/large-scale dynamical systems throughout collaborative research between dynamical systems theory and control systems theory. Thisbook,whichisthefirsttrialtowarddevelopmentsofsuchanewparadigm, presents fundamental and theoretical breakthroughs on analysis and control of complex/large-scale dynamical systems toward their applications to various engi- neering fields. In particular, this book focuses on the following three topics: 1. Analysis and control of bifurcation under model uncertainty. 2. Analysis and control of complex behavior including quasi-periodic/chaotic orbits. 3. Modeling of network complexity emerging from dynamical interaction among subsystems. Accordingtotheabovethreetopics,thisbookisorganizedasfollows:InPartI, robust bifurcation analysis, which deals with bifurcation analysis for dynamical systemssubjecttouncertaintyduetounmodeleddynamics,ispresentedandvarious kinds ofbifurcationcontrol methodsbased onthedegree ofstability areproposed. Part II begins with the analysis of chaotic behavior of triangle-folding maps, and presentsnovel attemptsfor controlling various kinds of complex behavior,namely feedback stabilization of quasi-periodic orbits and spatial patterns, chaos control, ultra-discretization based control, and control of unstabilizable switched systems. Finally, Part III includes research topics on network model reduction and network structure identification toward control of large-scale network systems. Thisbookcanbebeneficialtomathematicians,physicists,biophysicistaswellas researchers on nonlinear science and control engineering for a better fundamental understanding of analysis and control synthesis of such complex systems. We would like to thank the contributors: Shun-ichi Azuma, Ken’ichi Fujimoto, Tomohisa Hayakawa, Yoshito Hirata, Natsuhiro Ichinose, Masaki Inoue, Daisuke Ito, Masato Ishikawa, Takayuki Ishizaki, Kenji Kashima, Takuto Kita, Hiroyuki Kitajima, Miki U. Kobayashi, Mio Kobayashi, Motomasa Komuro, Takuji Kou- saka,JunNishimura,ToshiyukiOgawa,YasuakiOishi,MasayasuSuzuki,Tomomi Takegami, and Tetsuya Yoshinaga for writing excellent chapters. This book is the outcome of the Japanese Research Project “the Aihara Inno- vativeMathematicalModellingProject(2010.3–2014.3)”,oneoftop30projectsof “FundingProgramforWorld-LeadingInnovativeR&DonScienceandTechnology (FIRST Program)” initiated by the Council for Science and Technology Policy (CSTP) in Japan. We would also like to express our sincere gratitude to all members of the international advisory board of this project for their fruitful Preface vii suggestionsandencouragementstowardthedevelopmentsofthisproject:Shun-ichi Amari, Miwako Doi, Hiroshi Fujii, Celso Grebogi, Seiichi Ishizu, Kunihiko Kaneko, Hiroshi Kawakami, Hidenori Kimura, Yoshiki Kuramoto, Jürgen Kurths, Henk Nijmeijer, Hugh Robinson, Ichiro Tsuda, Keiji Yamagami, and James A. Yorke. Tokyo, January 2015 Kazuyuki Aihara Jun-ichi Imura Tetsushi Ueta Contents Part I Robust Bifurcation and Control 1 Dynamic Robust Bifurcation Analysis . . . . . . . . . . . . . . . . . . . . . 3 Masaki Inoue, Jun-ichi Imura, Kenji Kashima and Kazuyuki Aihara 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Problem Formulation: Dynamic Robust Bifurcation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Equilibrium, Stability/Instability, and Robustness Analysis. . . . 7 1.3.1 Equilibrium Analysis. . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Robust Hyperbolicity Analysis. . . . . . . . . . . . . . . . . 11 1.3.3 Robust Bifurcation Analysis. . . . . . . . . . . . . . . . . . . 14 1.4 Examples of Robust Bifurcation Analysis . . . . . . . . . . . . . . . 15 1.4.1 Robustness Analysis of Saddle-Node Bifurcation . . . . 15 1.4.2 Robustness Analysis of Hopf Bifurcation. . . . . . . . . . 16 1.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Robust Bifurcation Analysis Based on Degree of Stability. . . . . . . 21 Hiroyuki Kitajima, Tetsuya Yoshinaga, Jun-ichi Imura and Kazuyuki Aihara 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 System Description and Robust Bifurcation Analysis. . . . . . . . 22 2.2.1 Continuous-Time Systems . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Discrete-time Systems. . . . . . . . . . . . . . . . . . . . . . . 23 2.2.3 Robust Bifurcation Analysis. . . . . . . . . . . . . . . . . . . 24 2.3 Method of Robust Bifurcation Analysis. . . . . . . . . . . . . . . . . 25 2.4 Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.1 Equilibrium Point . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ix x Contents 2.4.2 Periodic Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Use of a Matrix Inequality Technique for Avoiding Undesirable Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Yasuaki Oishi, Mio Kobayashi and Tetsuya Yoshinaga 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Considered Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6 Avoidance of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6.1 Method for Chaos Avoidance. . . . . . . . . . . . . . . . . . 38 3.6.2 Experimental Result . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 A Method for Constructing a Robust System Against Unexpected Parameter Variation. . . . . . . . . . . . . . . . . . . . . . . . . 41 Hiroyuki Kitajima and Tetsuya Yoshinaga 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 Search for Optimal Parameter Values . . . . . . . . . . . . 43 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Discrete-Time System . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.2 Continuous-Time System. . . . . . . . . . . . . . . . . . . . . 46 4.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Parametric Control to Avoid Bifurcation Based on Maximum Local Lyapunov Exponent. . . . . . . . . . . . . . . . . . . 49 Ken’ichi Fujimoto, Tetsuya Yoshinaga, Tetsushi Ueta and Kazuyuki Aihara 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.4 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.