ebook img

Analyse Complexe: Proceedings of the Journées Fermat - Journées SMF, held at Toulouse, May 24–27, 1983 PDF

192 Pages·1984·3.765 MB·English-French
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analyse Complexe: Proceedings of the Journées Fermat - Journées SMF, held at Toulouse, May 24–27, 1983

Lecture Notes ni Mathematics Edited by .A Dold and .B Eckmann 4901 esylanA exelpmoC Proceedings of the Journ6es Fermat - Journees ,FMS held at Toulouse, yaM 24-27, 1983 Edit6 par .E Amar, .R Gay et Nguyen Thanh naV III galreV-regnirpS nilreB Heidelberg New York oykoT 1984 Editors Eric Amar Roger Gay Unite associee CNRS 226, Universite de Bordeaux I 35t Cours de la Liberation, 33405 France Talence, Thanh Nguyen naV Laboratoire Complexe d'Analyse Analyse et Fonctionnelle Universite Paul Sabatier 811 Route de Narbonne, 31062 Cedex, Toulouse France AMS Subject Classification (1980): 32 22, A 32 99, D 32 25, E 32 30, E 32F99, 32H99 ISBN 3-540-13886-2 Berlin Heidelberg Springer-Verlag Tokyo New York ISBN 0-38743886-2 Heidelberg New York Tokyo Berlin Springer-Vertag This work is subject to copyright. All rights are reserved, whether the whole or part of the matenat is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under 9£ 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich. © by Springer-Verlag Berlin Heidelberg 1984 Printed in Germany Printing and binding: Bettz Offsetdruck, Hemsbach/Bergstr. 2146/3t 40-5432~i 0 PREFACE Le Colloque de Toulouse en Analyse Complexe a eu lieu l'Universit@ Paul Sabatier du 24 au 27 Mai 1983, organis4 autour des deux axes suivants : )I Th4ories du Potentiel Complexe : capacit4s, 4quations de Monge-Amp6re Complexe, probl6me de Dirichlet,... 2) Etude des fonctions holomorphes : noyaux reprodui- sants, r4solvant l'@quation ~ , extension et division,... L'analyse complexe en plusieurs variables est relati- vement jeune en ce sens qu'elle a pris un nouveau d4part avee l'in- troduction de noyaux "presque" explicites reproduisant et r4solvant l'4quation ~u = f, en 1969-1970, par Ramirez de Arellano, G. Henkin, I. Lieb, H. Skoda et d'autres depuis. Au cours du Colloque, on a pu constater les progr6s ef- fectu4s depuis : presque toutes les questions "naturelles" sont r4so- lues pour les domaines strictement pseudo-convexes born4s de {n ; en voici quelques exemples : - solutions de l'4quation u~" = f avec estimations cri- tiques ; - division et extension de fonctions holomorphes avec contr61e de croissance. - existence de fonctions int@rieures. - "bonne" d4finition d'une capacit4 complexe. - solutions ~ C de l'4quation de Monge-Amp6re complexe quand le second membre est a C et non nul et bien d'autres r4sultats encore, ce qui fait que d4j~ les domaines faiblement pseudo-convexes et les domaines non born4s, sont 4tudi4s efficacement par de nombreux chercheurs. Nous exprimons notre gratitude envers les 4tablissements et organismes qui ont bien voulu financer le Colloque : Universit4 Paul Sabatier de Toulouse Universit4 de Bordeaux I Soci4t~ Math4matique de France Direction de la coop4ration et des relations internationales IV Nous ne saurions oublier l'aide d4vou~de Pierre Bonneau, Anne Cumenge et Ahmed Z4riahi. Qu'ils en soient remerci4s ici. Enfin nous remercions la Maison Springer qui a bien vou- lu accepter de publier les Actes du Colloque dans sa s@rie "Lecture Notes in Mathematics", favorisant ainsi une diffusion large et rapide. E.A., R.G. et N.T.V. LISTE DES CONFERENCES (par ordre chronologique) IDRAM 42 IAM I. LIEB (en collabo, avec )EGNAR : Formules int~grales dans la th~orie du pro- em~lb ~ -Neumann. .E DROFDEB : Boundary behaviour of proper holomorphic correspondances. (*) S. LLEB : Boundary behavior of holomorphic mappings dna B-N problem. (*) oG YKSSUOLD : Surfaces ed Kato. J. BRUNA : Id~aux de type fini dans les alg~bres Am(D). (*) .P ed SIEMOLOTRAB : Fibr6s positifs et applications harmoniques. IDERCREM 52 IAM emM .M HAKIM (en collabo, avec .N )YNOBIS : Valeurs au bord des modules ed fonc- tions holomorphes. Chr. NAMLESIK : Monge-Amp6re ne dimension finie. (*) J.J. NHOK : ehT Dirichlet Problem for the complexe Monge-Amp~re Equation. L. TREPMEL : Solving the degenerate Monge-Amp~re Eauations with one concentra- ted singularity. L. NAMURG : Prolongement d'ideaux. Applications. (*) LE RIM : Prolongement des courants positifs ferm~s. hT MOOLB : Interpolation polynominale des fonctions analytiques. (*) IDUEJ 62 MAI, matin B.A. ROLYAT : Comparaison of emos capacities in C n. (*) J. SICIAK : Highly non continuable functions on polynomial convex sets. (*) .U LLERGEC (avec remarques par P. )GNOLEL : Discontinuities of the complexe er~pmA-egnoM Operator, (*) IDERDNEV 72 IAM K. HCIREDEID : Proper holomorphic mappings with fibers of positive dimension. J.P. YLLIAMED : Propagation des singularit6s des courants positifs ferm~s. (*) .hP REITNEPRAHC : Z~ros sed fonctions ed la classe ed Nevanlinna ne plusieurs variables. (*) J. AREDREV : Quelques r~sultats d'approximation par des modules holomorphes. (*) emM .H TNERUAL : Th~or~me ed Plemelj et th~or6me ed Bochner sur les vari~t~s ed Stein. (*) J. ELRETSE : Continuit~ des caract6res d'une alg6bre de Fr~chet et applications de Bieberbach, (*) seL conferences marquees d'un ast~risque ont donn~ lieu aux textes publi~s dans ce volume. DES LISTE PARTICIPANTS RAMA Eric (Bordeaux, France) ED SIEMOLOTRAB Paolo (Florence, Italie) DROFDEB Eric (Indiana, Etats-Unis) LLEB Steve (Princeton, Etats-Unis) UOTTAYNEB demahoM daassaL (Tunis, Tunisie) NOSSTDNREB oB (G~teborg, )edeuS MOOLB samohT (Toronto, )adanaC IMANOB Aline (OrlEans, France) UAENNOB Pierre (Toulouse, France) ANURB Joaquin (Barcelone, )engapsE SEUGRUB Josep (Barcelone, )engapsE OLLITSAC naoJ (Barcelone, )engapsE LLERGEC nabrU (Uppsala, )ed6uS ITNEPRAHC RE Philippe (Orsay, France) TAMUAHC seuqcaJ (Orsay, France) TELLOHC Anne-Marie (Orsay, France) TEPUOC Bernard (Marseille, France) IFUC Julia (Barcel one, )engapsE EGNEMUC ennA (Toulouse, France) NONEUGED Charles (Toulouse, France) EHGNALED Richard ,dnaG( Belgique) YLLIAMED Jean-Pierre (Grenoble, France) JDIRRED lhkaM ouf ,neuoR( France) ZARTED Jacquel ine (Marseille, France) HCIREDEID Klas (Wuppertal, lA )engamel DINI Gilberto (Florence, Italie) YKSSUOLD segroeG (Marseil le, France) TLUAEBLOD Pierre (Paris, France) LE RIM Hassine (Nancy, France) ENIMRE J.L. (Bordeaux, France) ELRETSE J. (Bordeaux, France) REIRREF J.P. (Nancy, France) IKSNEZULAG .G (Bordeaux, France) YAG .R (Bordeaux, France) TECRAG Andre (Liege, leB gique) REGNARG .M (Bordeaux, France) NAMURG .M (Marseil le, France) llV EDNEYOKOMI A. (Toulouse, France) IHCIAHCAH demahoM Salah (Alger, Alg~rie) MIKAH Monique (Orsay, France) TLUANEH .hC (Bordeaux, France) NAIRAHCAKREK (Nancy, France) NAMLESIK Christer .O (Uppsala, Suede) NHOK Joseph J. (Princeton, Etats-Unis) FEIRK Pierre-Henry (Marseille, France) ICCUDNAL Mario (Florence, Italie) TNERUAL Christine (Paris, France) GNOLEL Pierre (Paris, France) TREPMEL Laszlo (Budapest, Hongrie) LIEB Ingo (Bonn, Allemagne) RAFFOG-TEBMOL Josette (Li6ge, Belgique) OTSENUOL Pertti (Espoo, Finlande) LIREM A. (Bordeaux, France) NEYUGN Thanh naV (Toulouse, France) ZARREVON Philippe (Nancy, France) AGETRO Joaquin (Barcelone, Espagne) TEUQAP J.C. (Mons, Belgique) NOSSRETTEP Mikael (Stockholm, Su6de) GULFP Peter (OsnabrUck, Allemagne) ZEIMMOP Michel (Toulouse, France) NIOBAR P. (Nancy, France) VONADAMAR Ivan-Pierre (Sofia, Bulgarie) SOOR yuG (Tunis, Tunisie) YASOR Jean-Pierre (Marseille, France) IGGAVLES OIRECEMIRP Angela (Florence, Italie) YNOBIS Nessim (Orsay, France) SICIAK Josef (Cracovie, Pologne) ADOKS Henri (Paris, France) RABBES .A (Bordeaux, France) NEMMOS Franciscus (Gand, Belgique) IUOAHLAT Abdellah (Marseille, France) ROLYAT B.A. (Michigan, Etats-Unis) SAMOHT Pascal (Paris, France) AREDREV Joan (Barcelone, Espagne) ONIHSOY OINUK (Gand, Belgique) IHAIREZ demhA (Toulouse, France) ZCIWONYRWA£ J. (~odz, Pologne) ELBAT SED SEREITAM Eric Bedford et Steve Bell Holomorphic correspondences of Bounded Domains in n C ...................... I- 41 samohT Bloom nO the convergence of Interpolating Polynomials for Entire Functions ...... 15- 91 Joaquim Bruna et Joaquim .M Ortega Id~aux ferm~s ed type fini dans les alg#bres Am(D) ........................ 2o- 82 Urban Cegrell nO the Discontinuity of the Complex er~pmA-egnoM Operator ................. 29- 13 Philippe Charpentier Sur les z~ros sed fonctions de type Nevanlinna dans le bidisque ............ 32- 34 Philippe Charpentier et Aline imanoB Estimations sed (1-1) courants positifs ferm~s dans les domaines ed 2 C .... 44- 25 Jean Pierre Demailly Sur la propagation sed singularit~s sed courants positifs ferm~s .......... 53- 46 Jean Esterle em@lborP ed Michael et fonctions enti@res ed plusieurs variables complexes 65- 38 Lawrence namurG Solutions of Difference Equations with Non-constant Coefficients .......... 84-138 Christer .O Kiselman Sur la d~finition ed l'op~rateur ed er~pmA-egnoM complexe ................. 139-15o Christine Laurent-Thiebaut em~ro~hT de Bochner sur enu vari~t~ de Stein .............................. 151-161 namroN Levenberg et B.A. Tayl~r Comparison of Capacities in C ............................................ 162-172 Josef Siciak Highly Noncontinuable Functions in Polynomial Convex Sets ................. 173-178 Joan Verdera Uniform approximation yb solutions of higher order Cauchy-Riemann equations 179-184 Holomorphic Correspondences of Bounded Domains in ~n Eric Bedford and Steve Bell 1. Introduction Let ~ , Dcc {n be open sets, and let ~T : 9 × D ÷ ~ , ~D : ~ × D + D denote projections. If V c ~i × D is a complex sub- variety, then we consider the associated multiple-valued function f ---o D given by f(z) : ~YD~l(z) This is a natural generaliza- tion of the usual definition of a single-valued function and V will be referred to as the graph of f , and we write V = f'l If ~ : V + ~ is proper, then f : ~[ -o D is upper semicontin- uous, i.e. for 0 z c 9 and 6 > 0 , there exists s > 0 so that f(z) c {w c D : dist(w,f(z0) ) < 6} for all z E {z c ~ : Iz-z01 < E) (see [15]). The inverse correspon- dence f-i : D -~ ~ is defined as the correspondence whose graph is F-i : { (W,z) < D × q~ : (z,w) { Ff} f A correspondence is proper_ if and only if both ~ : V Q and ~D : V ÷ D are proper. In this case both f and f-i are upper semicontinuous. A correspondence f : ~ -o D is irreducible if Ff is an irre- ducible variety. If f is proper and if ~ and D are connected, then there are finitely many irreducible, proper correspondences 3'f : ~ ~-- D , j = 1,2,...,k such that if : I~fl u...u ['fk Corre- spondences have the following properties, which are valid if ~. is a 3 complex space (see [16]). Proposition i.i. Let f : ~i o-- q2 ' g : 2~f o-- ~3 ee__b proper corre- spondences. Then the set-valued mapping gf(z) = g(f(z)) defines a Rroper, holomorphic correspondence gf : i]~ -~ Q3 " Further, the iden- tit[ map i~2 is an irreducible component of both g -i g and ff-i Holomorphic correspondences were studied in a rather general con- text by K. Stein [16]. For instance, correspondences give a useful generalization of meromorphic mappings. Correspondences also arise naturally in some algebraic-geometric constructions (see [9]). Here we consider the special case of correspondences between bounded domains, which rules out many kinds of singular behavior. In partic- ular, dim f(z) is both constant and equal to zero, i.e. these are "Uberlagerungskorrespondenzen" (cf. Rischel [13]). Here we give some elementary facts and examples of correspon- dences. These are given in Sections 2 and 3. In Section 4 we discuss briefly some results on the boundary regularity of correspondences, obtained in [4,5]. One tool used for boundary regularity is the Bergman kernel function, and we show in Section 4 how the kernel func- tion transforms under proper correspondences. Our principal motivation for studying correspondences has been in the factorization of a proper mapping h : ~i ~ D (see [2]). That is, correspondences are used to prove the following. Theorem 1.2. If 9 is simply connected and has C , strongly pseudo- convex boundary, then there is a subgroup I ::c Aut([!) such that )i( hg = h for all g ~ ! , and (ii) h-lh )z( : u g(z) (This result is proved in [5]; and an easier proof is given in [4] under the assumption that ~.:i; is also real analytic.) In case ~ fails either to be simply connected or strongly pseudoconvex, the group i need not exist. In this case, however, we have a set of correspondences Aut~(f~) : {proper correspondences T : ~ o-- i;i such that hT : h} It follows that Aut~(~) satisfies (i) and (ii) above. Furtherr Aut~(~) yields some understanding of the mapping h : ~ * D as a branched covering space, since it plays in some sense the role of the group of covering transformations. In Section 5 we discuss the set Aut~([~) under the operation of composition. In general, Aut~(~) does not form a group but has the structure of a graph on the finite set h-lh(z ) 0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.