ebook img

Analog Test Signal Generation Using Periodic ΣΔ-Encoded Data Streams PDF

156 Pages·2000·4.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analog Test Signal Generation Using Periodic ΣΔ-Encoded Data Streams

ANALOG TEST SIGNAL GENERATION USING PERIODIC ~Ll-ENCODED DATA STREAMS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE ANALOG CIRCUITS AND SIGNAL PROCESSING Consulting Editor: Mohammed Ismail. Ohio State University Related Titles: DESIGN, SIMULATION AND APPLICATIONS OF INDUCTORS AND TRANSFORMERS FOR Si RFIcs A.M. Niknejad, R.G. Meyer ISBN: 0-7923-7986-1 DESIGN AND IMPLEMENTATION B.E. Jonsson ISBN: 0-7923-7871-7 RESEARCH PERSPECTIVES ON DYNAMIC TRANSLINEAR AND LOG-DOMAIN CIRCUITS W.A. Serdijn, J. Mulder ISBN: 0-7923-7811-3 CMOS DATA CONVERTERS FOIl COMMUNICATIONS M. Gustavsson, J. Wikner, N. Tan ISBN: 0-7923-7780-X DESIGN AND ANALYSIS OF INTEGRATOR-BASED LOG -DOMAIN FILTER CIRCUITS G.W. Roberts, V. W. Leung ISBN: 0-7923-8699-X VISION CHIP A. Moini ISBN: 0-7923-8664-7 COMPACT LOW·VOLTAGE AND HIGH·SPEED CMOS, BiCMOS AND BIPOLAR OPERATIONAL AMPLIFIERS K-J. de Langen, J. Huijsing ISBN: 0-7923-8623-X CONTINUOUS·TIME DELTA·SIGMA MODULATORS FOR HIGH·SPEED AID CONVERTERS: Theory, Practice and Fundamental Performance Limits J.A. Cherry, W. M. Snelgrove ISBN: 0-7923-8625-6 LEARNING ON SILICON: Adaptive VLSI Neural Systems G. Cauwenberghs, M.A. Bayoumi ISBN: 0-7923-8555-1 ANALOG LAYOUT GENERATION FOR PERFORMANCE AND MANUFACTURABILITY K. Larnpaert, G. Gielen, W. Sansen ISBN: 0-7923-8479-2 CMOS CURRENT AMPLIFIERS G. Palmisano, G. Palumbo, S. Pennisi ISBN: 0-7923-8469-5 HIGHLY LINEAR INTEGRATED WIDEBAND AMPLIFIERS: Design and Analysis Techniques for Frequencies from Audio to RF H. Sjoland ISBN: 0-7923-8407-5 DESIGN OF LOW·VOLTAGE LOW·POWER CMOS DELTA·SIGMA AID CONVERTERS V. Peluso, M. Steyaert. W. Sansen ISBN: 0-7923-8417-2 ANALOG TEST SIGNAL GENERATION USING PERIODIC ~Ll-ENCODED DATA STREAMS by Benoit Dufort Philips Research and w. Gordon Roberts McGill University ~. " SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4613-6968-4 ISBN 978-1-4615-4377-0 (eBook) DOI 10.1007/978-1-4615-4377-0 Copyright @ 2000 Springer Science+Business Media New York Originally published by Kluwer Academic Publishers, New York in 2000 Softcover reprint ofthe hardcover lst edition 2000 AH rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permis sion of the publisher, Springer Science+Business Media, LLC Printed on acid-free pap er. Table of Contents Preface ................................................................................................ xi Chapter 1: Introduction ..................................................................... 1 1.1 Test and Technology Evolution ................................................ 2 1.2 Design-for-Testability (DFT) .................................................... 3 1.3 Motivation for this Book ........................................................... 5 1.4 Outline of Book ......................................................................... 5 Chapter 2: Mixed-Signal Testing ...................................................... 7 2.1 Digital Testing .......................................................................... 8 2.2 Manufacturing Issues ................................................................ 9 2.3 AnaloglMixed-Signal Testing ................................................. 11 2.4 The Changing Requirements of Mixed-Signal Test ............... 14 2.4.1 Evolution with Design and Production Life Cycle ..... 15 2.4.2 Evolution with Circuit Performance ........................... 16 2.5 Built-In Self-Test Schemes ..................................................... 18 2.5.1 CODEC and MODEM Circuits .................................. 18 2.5.2 Transceiver Circuits .................................................... 19 2.5.3 Phase-Lock Loops ....................................................... 21 2.6 Stimulus Generation ................................................................ 21 2.6.1 Direct Digital Frequency Synthesis ............................ 21 vi Table of Contents 2.6.2 l:~ Oscillator ............................................................... 23 2.6.3 Memory-Based l:~ Generators .................................. .24 2.7 Parameter Extraction ............................................................... 25 2.7.1 Code Density Testing .................................................. 25 2.7.2 Correlation Tests ......................................................... 25 2.7.3 On-Chip Digital Sampling Oscilloscope .................... 25 2.8 Summary ................................................................................. 26 Chapter 3: Periodic l:~ Bit Stream Theory .................................... 27 3.1 Periodic Signals and Frequency Domain Description ........... .27 3.1.1 Coherent Signals ......................................................... 31 3.2 l:~ Modulation ........................................................................ 32 3.2.1 Quantization and Performance Metrics ...................... 32 3.2.2 Oversampling Converters ........................................... 34 3.2.3 Noise Shaping ............................................................. 36 3.3 Generating Periodic Bit Streams ............................................ .39 3.3.1 Input Signal ................................................................. 41 3.3.2 Signal and Noise Transfer Function ......................... ..41 3.3.3 Bit Stream Length Selection ..................................... ..41 3.3.4 Sequence Generation ................................................. .42 3.4 Practical Considerations ......................................................... .42 3.4.1 Frequency Resolution ................................................ .42 3.4.2 Amplitude Range and Resolution ............................. ..43 3.4.3 Phase Resolution ....................................................... ..43 3.4.4 Noise Spreading .......................................................... 45 3.4.5 Windowing .................................................................. 50 3.5 Optimization of Periodic Bit Streams ..................................... 50 3.5.1 Varying the Phase ofthe Tone .................................... 51 3.5.2 Varying the Tone Amplitude ...................................... 52 3.6 Performance Comparison of Optimized Bit Streams with Theo- retical Prediction ..................................................................... 54 3.6.1 SFDR .......................................................................... 54 3.6.2 Signal-to-Noise Ratio .................................................. 55 3.6.3 Power Spectral Density ............................................... 56 3.7 Design Aids ............................................................................. 57 3.7.1 Maximum SFDR ......................................................... 57 3.7.2 Maximum Amplitude .................................................. 59 3.8 Multi-Bit Streams ................................................................... 60 3.8.1 Input Signal ................................................................. 60 Table of Contents vii 3.8.2 Quantizer ..................................................................... 61 3.8.3 Optimization ............................................................... 61 3.9 Alternative Optimizations ....................................................... 61 3.9.1 Optimization with Non-spectral Criteria .................... 61 3.9.2 Periodic :E~ Modulator: Limit Cycles ......................... 63 3.9.3 Genetic Algorithm Optimization ................................ 64 3.10 Summary ............................................................................... 64 Chapter 4: Analog Signal Generation .............................................6 5 4.1 Sinewave Generation .............................................................. 65 4.1.1 Single-Tone ................................................................. 65 4.1.2 Multi-Tone .................................................................. 65 4.2 DC Generation ........................................................................ 66 4.2.1 Pulse Width Modulation (PWM) ................................ 67 4.2.2 Pulse Density Modulation (PDM) or Noise-Shaped DC Signals ......................................................................... 70 4.2.3 DC Amplitude Resolution .......................................... 73 4.3 Arbitrary Band-Limited Pulse Generation .............................. 73 4.3.1 Triangular Pulses ........................................................ 74 4.3.2 Communication Pulses ............................................... 75 4.3.3 Distorted Pulses .......................................................... 76 4.4 Digital Modulation .................................................................. 78 4.4.1 Amplitude Shift Keying (ASK) .................................. 78 4.4.2 Frequency Shift Keying (FSK) ................................... 81 4.4.3 Phase Shift Keying (PSK) ........................................... 83 4.5 Multi-Bit Generation ............................................................... 84 4.5.1 Dynamic Element Matching ....................................... 84 4.5.2 Periodic Dynamic Element Matching Generation ...... 88 4.6 Implementation Issues ............................................................ 88 4.6.1 Silicon Area ................................................................ 88 4.6.2 One-Bit DAC .............................................................. 90 4.6.3 Analog Filtering .......................................................... 91 4.6.4 No Filtering ................................................................. 91 4.6.5 Filter in the Circuit Under Test ................................... 91 4.6.6 Filter On-Chip ............................................................. 91 4.6.7 Filter Off-chip ............................................................. 92 4.6.8 Clock Jitter .:. ................................................................ 92 4.7 Summary ................................................................................. 95 viii Table of Contents Chapter 5: Integrated Circuit Prototypes ...................................... 97 5.1 Dual-Tone Multi-Frequency Generator .................................. 97 5.1.1 Frequency Selection .................................................... 97 5.1.2 FPGA Implementation ................................................ 98 5.2 RAM-Based Generator ......................................................... 100 5.2.1 Static RAM ............................................................... 100 5.2.2 Address Generator .................................................... 100 5.2.3 Silicon Implementation ............................................. 101 5.2.4 RAM Generator Measured Results ........................... 102 5.3 Shift-Register Based Generator ............................................ 10 4 5.3.1 Custom Dual-Phase Flip-flop ................................... 105 5.3.2 Variable Aspect Ratio ............................................... 106 5.3.3 Silicon Implementation and Results ......................... 106 5.3.4 Comparison with RAM-Based Generator ................. 107 5.4 High-Speed CMOS Generator .............................................. 108 5.4.1 Generator Design ...................................................... 10 8 5.4.2 High-speed Clocking: CMOS Phase Locked Loop .. 110 5.4.3 Bitstream Filtering .................................................... 110 5.4.4 Silicon Implementation ............................................. 111 5.4.5 Results ....................................................................... 111 5.5 Summary ............................................................................... 113 Chapter 6: Application to Arbitrary Waveform Generators ..... 115 6.1 Periodic L~ Multi-Bit Streams ............................................. 116 6.2 Increasing the Performance of A WGs .................................. 117 6.2.1 In-Band Tone Test .................................................... 118 6.2.2 Out-Of-Band Tone Test ............................................ 119 6.2.3 Trade-off Between Resolution and Bandwidth ......... 121 6.3 Non-Ideal Behavior ............................................................... 122 6.3.1 Clock Jitter ................................................................ 122 6.3.2 DAC Static Non-linearities ....................................... 122 6.3.3 Dynamic Non-linearities ........................................... 122 6.4 Calibration ............................................................................. 123 6.4.1 Clock Jitter ................................................................ 123 6.4.2 Static Calibration ...................................................... 124 6.4.3 Pseudo-Dynamic Calibration .................................... 127 6.4.4 Dynamic Calibration ................................................. 128 6.5 Future Arbitrary Waveform Generator ................................. 131 Table of Contents ix 6.6 Summary ............................................................................... 133 Chapter 7: Conclusions .................................................................. 135 7.1 Summary ............................................................................... 135 7.2 The Periodic Bitstream Approach ......................................... 135 7.3 On-Chip Generator for Analog and Mixed-Signal BIST ...... 136 7.4 Application to Arbitrary Waveform Generators ................... 137 7.5 Future Work .......................................................................... 137 References ........................................................................................ 139 Index ................................................................................................. 147 Preface The trend in the microelectronic field has been for denser and faster integrated circuits. Today we can integrate over 20 million transistors on a single chip, and this number is expected to double in the next year and a half. Until recently, most electronic systems consisted of one or many printed circuit boards, containing multiple integrated circuits (lCs) each. Recent advances in IC design methods and manufacturing technologies enable complete systems to be integrated on a single Ie. These so-called system chips offer advantages such as higher performance, lower power consumption, and smaller volume and weight, when compared to their traditional multi-chip equivalents. System chips typically contain mixed technologies, such as logic, memories of various types, and numerous analog building blocks. Many system chips are designed by embedding large reusable building blocks, commonly called cores. Design reuse offers to speed up the design and enables design expertise to be imported from third party vendors. Besides the obvious need for standards to guide their integration, the need for individual verification of each core is paramount for this approach to succeed, as the IC design community is now divided into core users and core providers. In traditional System-on-Board (SOB) design, the components that go from provider to the user are packaged ICs, which are designed, manufactured, and tested as stand alone components. The user of these components is then only concerned with manufacturing defects that appear in the component interconnections. In System-on Chip (SOC) design, the components are untested cores, where detailed knowledge of the design is not readily available. Hence, the core user becomes responsible for manufacturing and testing the entire system chip with little to go on. Rather, it appears as though the industry will move towards a position where the core provider will be expected to supply the test solution for its own core and pass on all test details

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.