Analog Circuits and Signal Processing Series Editors Mohammed Ismail, The Ohio State University Mohamad Sawan, École Polytechnique de Montréal For furthervolumes: http://www.springer.com/series/7381 Elie Maricau Georges Gielen • Analog IC Reliability in Nanometer CMOS 123 Elie Maricau Georges Gielen ESAT-MICAS ESAT-MICAS KULeuven KULeuven Heverlee Heverlee Belgium Belgium ISBN 978-1-4614-6162-3 ISBN 978-1-4614-6163-0 (eBook) DOI 10.1007/978-1-4614-6163-0 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012954854 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience?BusinessMedia(www.springer.com) Abstract Today, micro-electronic circuits are undeniably and ubiquitously present in our society. Transportation vehicles such as cars, trains, buses, and airplanes make abundantuse ofelectroniccircuitstoreduce energyconsumptionandemissionof greenhouse gases and to increase passenger safety and travel comfort. Other products using electronic circuits are smartphones, tablet PCs, game consoles, household appliances, satellites, base stations, servers, etc. Each of these appli- cations is becoming increasingly more complex to build. At the same time, the quality and reliability requirements for electronic circuits are more demanding than ever. To guarantee a high production yield and a sufficient circuit lifetime, possible hazardsandfailureeffectshavetobeconsideredthroughouttheentiredesignflow. Such a flow includes the initial concept, the design itself, the testing of the pro- totype circuit, and finally the production process. The majority of integrated cir- cuits manufactured today is processed in a complementary metal-oxide semiconductor (CMOS) technology. To reduce cost and to increase performance, the dimensions of all circuit components are shrinked with each new technology node. Associated with this technology scaling are the atomistic size of modern transistors,anincreaseofthegate-oxideelectricfield,andtheintroductionofnew gate and channel materials. The combination of these elements results in an emerging reliability problem for advanced nanometer CMOS technologies. Transistorwearoutmanifestsitselfasagradualandtime-dependentshiftofcircuit characteristicswhichcanresultincircuitfailure.Especiallyanalogcircuits,which aretypicallyusedasaninterfacebetweentherealworldandadigitalbackend,can be very sensitive to such small circuit parameter variations. This work focuses on the simulation and analysis of analog circuit reliability. The models and simulation techniques proposed in this dissertation are aimed to serveasanaidforcircuitdesignerstobetterunderstandtheimpactofagingeffects ontheircircuitsandtoenablethedevelopmentoffailure-resilientdesignsolutions. In a first part of the work, an overview of all relevant nanometer CMOS unreliabilityeffectsisgivenandtransistorcompactmodelsforthemostimportant v vi Abstract aging effects are proposed. A distinction between spatial unreliability effects, resulting from process variations, and temperoral unreliability effects, which are time-dependent,canbemade.Thelattercanagainbedividedintotransienteffects such as noise and electromagnetic interference, and aging effects such as break- down, bias temperature instability, and hot carrier injection. This work primarily concentrates on the aging effects. To enable efficient and accurate circuit lifetime simulations, transistor compact models for each aging effect are proposed. These models include the most important circuit-related stress parameters such as volt- ages, transistor dimensions, and temperature. Important effects such as partial recovery of the transistor damage when the stress voltage is reduced, are also supported. Each model is validated with measurements. Also, models for sto- chastic aging effects in sub-45 nm CMOS, which result in time-dependent tran- sistor mismatch, are discussed. A second part of the book focuses on the development of efficient simulation methods to analyze the impact of transistor aging on an entire circuit. Existing reliability simulators, published in the literature or commercially available, still suffer from a lot of deficiencies. Often, these tools do not supportall unreliability effectsandespeciallytheimpactofprocessvariationsandstochasticagingeffects is in most cases not included. The tool set presented in this work aims to solve these problems, while still limiting the computational effort. The proposed simu- lator includes support for all important deterministic and stochastic aging effects. Further, the interaction between process variations and aging effects can be ana- lyzed and visualized. In addition to a visualization of the time-dependent perfor- mance shift of the circuit under test, reliability weak spots can be detected. This enablesadesignertosearchfordedicatedsolutionsincaseofareliabilityproblem. To limit the simulation time, the simulator uses a response surface method which models the time-dependent circuit performance based on only a limited set of SPICE-based reliability simulations. Finally, a hierarchical simulation framework based on an adaptive sample selection algorithm and a nonlinear symbolic regression algorithm enables the reliability simulation of large analog circuits within a reasonable time frame. Each part of the simulation framework is dem- onstrated on an example circuit. The last part of this work applies the proposed reliability compact models and simulation methods to a set of commonly used analog circuits. Factors that determinethecircuitlifetimeareexploredandillustratedwithexamples.Further,a designforreliabilityflowisdemonstratedonanexampleIDACcircuitresultingin the design of a reliable circuit with minimum guardbanding. Finally, the lifetime of small- to medium-sized digital circuits is investigated. Although, the methods proposed in this work are primarily intended for analog circuits, they are also applicabletosmall-andmedium-sizeddigitalcircuitswhenthesearedefinedasa SPICE netlist. Themodelsandsimulationtechniquesdevelopedinthisworkareintendedasa firststeptowardsunderstandingtheimpactoftransistoragingonanalogintegrated circuits.Eventually,thisunderstandingcanhelpdesignersindesigningguaranteed reliable and robust circuits in future CMOS process nodes. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Reliability Engineering: A Brief History . . . . . . . . . . . . . . . . . 1 1.3 Reliability of Electronic Systems. . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Reliability in Nanometer CMOS . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.1 Reduction of the Effective Oxide Thickness. . . . . . . . . . 5 1.4.2 Introduction of New Materials and Devices . . . . . . . . . . 7 1.4.3 Atomic-Scale Dimensions . . . . . . . . . . . . . . . . . . . . . . 8 1.4.4 Mission Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.5 Time and Money Constraints . . . . . . . . . . . . . . . . . . . . 9 1.5 Design for Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5.1 Define. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.5.2 Identify . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5.3 Analyze and Assess. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.4 Quantify, Improve and Validate . . . . . . . . . . . . . . . . . . 13 1.5.5 Monitor and Control . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 CMOS Reliability Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 The Origin of CMOS Unreliability . . . . . . . . . . . . . . . . . . . . . 15 2.3 Spatial Unreliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 Systematic Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Temporal Unreliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Aging Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.2 Transient Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 vii viii Contents 3 Transistor Aging Compact Modeling . . . . . . . . . . . . . . . . . . . . . . 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Hot Carrier Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 A HCI Compact Model for Circuit Simulation. . . . . . . . 40 3.2.3 HCI in Sub-45 nm CMOS . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Bias Temperature Instability. . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3.2 A BTI Compact Model for Circuit Simulation . . . . . . . . 55 3.3.3 Model Calibration and Validation. . . . . . . . . . . . . . . . . 61 3.3.4 BTI in Sub-45 nm CMOS . . . . . . . . . . . . . . . . . . . . . . 68 3.4 Time-Dependent Dielectric Breakdown . . . . . . . . . . . . . . . . . . 69 3.4.1 Hard Breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4.2 Soft Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Aging-Equivalent Transistor Model. . . . . . . . . . . . . . . . . . . . . 73 3.5.1 Threshold Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.2 Carrier Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.5.3 Oxide Breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.6 Aging Model for Hand Calculations . . . . . . . . . . . . . . . . . . . . 75 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4 Background on IC Reliability Simulation . . . . . . . . . . . . . . . . . . . 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Literature Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Berkeley Reliability Tools (BERT). . . . . . . . . . . . . . . . 80 4.2.2 Other Reliability Simulators. . . . . . . . . . . . . . . . . . . . . 83 4.3 Commercial Reliability Simulators . . . . . . . . . . . . . . . . . . . . . 84 4.3.1 The Mentor Graphics Reliability Simulator . . . . . . . . . . 84 4.3.2 The Cadence Reliability Simulator (BERT/RelXpert) . . . 86 4.3.3 The Synopsys Reliability Simulator (MOSRA). . . . . . . . 87 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Analog IC Reliability Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Deterministic Reliability Simulation . . . . . . . . . . . . . . . . . . . . 94 5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.2.2 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2.3 Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3 Stochastic Reliability Simulation. . . . . . . . . . . . . . . . . . . . . . . 109 5.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.3.2 Implementation 1: Monte-Carlo Simulation . . . . . . . . . . 112 5.3.3 Implementation 2: A Response Surface Methodology . . . 115 Contents ix 5.3.4 Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.4 Hierarchical Reliability Simulation . . . . . . . . . . . . . . . . . . . . . 136 5.4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.4.2 Implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.4.3 Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6 Integrated Circuit Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.2 Assessment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.2.1 Observed Performance Parameter . . . . . . . . . . . . . . . . . 153 6.2.2 Process Capability Index . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.3 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.2.4 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.2.5 Stress Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3 Failure-Resilient Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3.1 Intrinsically Robust Circuits. . . . . . . . . . . . . . . . . . . . . 161 6.3.2 Self-healing Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.4 Case Study 1: IDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4.1 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.4.2 Conventional Design. . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.4.3 Reliability-Aware Design: Fixed Topology. . . . . . . . . . . 168 6.4.4 Reliability-Aware Design: Digitally-Assisted Analog. . . . 170 6.5 Case Study 2: Digital Circuits. . . . . . . . . . . . . . . . . . . . . . . . . 171 6.5.1 Digital Circuit Lifetime. . . . . . . . . . . . . . . . . . . . . . . . 172 6.5.2 Minimum Circuit Lifetime. . . . . . . . . . . . . . . . . . . . . . 173 6.5.3 Example Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.1 General Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Abbreviations AC Alternating Current ADC Analog-to-Digital Converter AEC Automotive Electronics Council ALT Accelerated Life Test AMS Analog and Mixed Signal BERT Berkeley Reliability Tools BSIM Berkeley Short-channel IGFET Model BTI Bias Temperature Instability CDF Cumulative Density Function CMOS Complementary Metal-Oxide-Semiconductor CHE Channel Hot Electron CP Charge Pumping DAC Digital-to-Analog Converter DAHC Drain Avalange Hot Carrier DC Direct Current DFR Design For Reliability DPT Design Patterning Technology DUT Device Under Test eMSM extended Measurement Stress Measurement EM ElectroMigration EMI ElectroMagnetic Interference ENOB Effective Number Of Bits EOT Effective Oxide Thickness EUVL Extreme Ultraviolet Lithography ESD ElectroStatic Discharge FET Field Effect Transistor FF Fractional Factorial FFX Fast Function eXtraction FMEA Failure Mode Effect Analysis FTC Fast Transient Charging GBW Gain-BandWidth xi
Description: