ebook img

Analog Filters for Telecommunications Active-RC Filters PDF

183 Pages·2005·11.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analog Filters for Telecommunications Active-RC Filters

Dipartimento di Ingegneria dell' Innovazione Universita' degli Studi di Lecce Andrea Baschirotto [email protected] Analog Filters for Telecommunications Universita’ degli Studi di Bologna June, 16th-17th, 2005 Active-RC Filters A. Baschirotto, “Analog Filters for Telecommunications” 86 1st order cell Filter Frequency Response • First order cell 1+s(cid:2)(cid:1) H(s) = A (cid:2) z o 1+s(cid:2)(cid:1) p • Passive implementation • Specific cases 1 s(cid:1)R(cid:1)C H (s) = H (s) = LP HP 1+s(cid:1)R(cid:1)C 1+s(cid:1)R(cid:1)C • Zero power consumption • Non-zero output impedance • Useful for infinite input impedance block to be fed by this filtering stage A. Baschirotto, “Analog Filters for Telecommunications” 87 Active-RC Filters Basic building block: The integrator C v i v o R 1 H(s) = – s(cid:1)R(cid:1)C • The building block for ladder structures A. Baschirotto, “Analog Filters for Telecommunications” 88 Active-RC Filters 1st order cell: Filter Frequency Response R 1+s(cid:1)R (cid:1)C 2 1 1 H(s) = – (cid:1) R 1+s(cid:1)R (cid:1)C 1 2 2 • The ratio R /R defines the dc-gain 2 1 • Their absolute values are defined by other parameters (noise, dynamics, etc ….) • Non-zero power consumption due to the opamp • Zero output impedance • Output load (of following stages) can be driven A. Baschirotto, “Analog Filters for Telecommunications” 89 2nd order cell (Biquadratic) cell 2 2 (s +s(cid:2)(cid:1) /Q +(cid:1) ) z1 z1 z1 H(s) = 2 2 (s +s(cid:2)(cid:1) /Q +(cid:1) ) p1 p1 p1 • Complex poles/zeros are present (cid:1) A passive RC implementation is not possible (a regenerative loop is need to have complex poles) • Possible Active-RC implementations (cid:1) Single-Opamp Biquad (cid:1) Sallen&Key Biquadratic cell (cid:1) Rauch Biquadratic cell (cid:1) Multi-Opamp Biquad (cid:1) Kerwin-Huelsman-Newcomb (KHN) Biquadratic cell (cid:1) Tow-Thomas Biquadratic cell A. Baschirotto, “Analog Filters for Telecommunications” 90 Single-Opamp Biquad Sallen&Key Biquadratic cell V Z `(cid:1)Z ` o 1 2 H(s) = = V (Z +Z +Z `)(cid:1)Z `+Z (cid:1)Z i 1 2 2 1 1 2 • The opamp is in a buffer configuration • The opamp output swing is present at the opamp input nodes (cid:1) The input stage may be critical A. Baschirotto, “Analog Filters for Telecommunications” 91 Single-Opamp Biquad Sallen&Key Biquadratic cell • Low-pass frequency response Z1 = Z2 = R C1 1 Z '= 1 s C 1 R R vi 1 C2 vo Z '= 2 s C 2 1 H(s) = 2 2 1+ 2(cid:1)R(cid:1)C (cid:1)s+R (cid:1)C (cid:1)C (cid:1)s 2 1 2 1 1 C (cid:1) = Q= (cid:1) 1 o C (cid:2)C (cid:2)R 2 C 1 2 2 2 (cid:2)Q 1 C = C = 1 2 R(cid:2)(cid:1) 2 (cid:2)Q(cid:2)R(cid:2)(cid:1) o o • In-band maximally-flat frequency response for (Q= 2 2) 1 1 C1 = 2·C2 f = (cid:2) p 2(cid:2)(cid:1) 2 (cid:2)R(cid:2)C A. Baschirotto, “Analog Filters for Telecommunications” 92 Single-Opamp Biquad Sallen&Key biquad • Noise performance C1 R R vi C2 vo 2 2 V = 2(cid:1)4(cid:1)k(cid:1)T (cid:1)R+V n_out n_opamp • Linearity performance (cid:1) Good linearity for closed loop configuration (cid:1) For out-of-band signal a 2·R-C prefilter increases out-of-band linearity 2 A. Baschirotto, “Analog Filters for Telecommunications” 93 Single-Opamp Biquad Sallen&Key biquad • Parasitic capacitance sensitivity C 1 R R v i v o C C p p C 2 • The transfer function is affected by the parasitic capacitance at the two nodes A. Baschirotto, “Analog Filters for Telecommunications” 94 Single-Opamp Biquad Sallen&Key Biquadratic cell • Lowpass configuration: Design issue C1 (cid:1) In the passband no current flows on the R R resistances (even if they are non vi linear, non harmonic distortion C2 vo results). • Low pass Sallen and Key filter with real op-amp: • A real op-amp used in CMOS monolithic S&K filter is a transconductance op-amp A. Baschirotto, “Analog Filters for Telecommunications” 95

Description:
Low pass Sallen and Key filter with real op-amp: • A real op-amp .. the signal. • In a fully differential implementation it can be replaced by crossing the lines
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.