Dipartimento di Ingegneria dell' Innovazione Universita' degli Studi di Lecce Andrea Baschirotto [email protected] Analog Filters for Telecommunications Universita’ degli Studi di Bologna June, 16th-17th, 2005 Active-RC Filters A. Baschirotto, “Analog Filters for Telecommunications” 86 1st order cell Filter Frequency Response • First order cell 1+s(cid:2)(cid:1) H(s) = A (cid:2) z o 1+s(cid:2)(cid:1) p • Passive implementation • Specific cases 1 s(cid:1)R(cid:1)C H (s) = H (s) = LP HP 1+s(cid:1)R(cid:1)C 1+s(cid:1)R(cid:1)C • Zero power consumption • Non-zero output impedance • Useful for infinite input impedance block to be fed by this filtering stage A. Baschirotto, “Analog Filters for Telecommunications” 87 Active-RC Filters Basic building block: The integrator C v i v o R 1 H(s) = – s(cid:1)R(cid:1)C • The building block for ladder structures A. Baschirotto, “Analog Filters for Telecommunications” 88 Active-RC Filters 1st order cell: Filter Frequency Response R 1+s(cid:1)R (cid:1)C 2 1 1 H(s) = – (cid:1) R 1+s(cid:1)R (cid:1)C 1 2 2 • The ratio R /R defines the dc-gain 2 1 • Their absolute values are defined by other parameters (noise, dynamics, etc ….) • Non-zero power consumption due to the opamp • Zero output impedance • Output load (of following stages) can be driven A. Baschirotto, “Analog Filters for Telecommunications” 89 2nd order cell (Biquadratic) cell 2 2 (s +s(cid:2)(cid:1) /Q +(cid:1) ) z1 z1 z1 H(s) = 2 2 (s +s(cid:2)(cid:1) /Q +(cid:1) ) p1 p1 p1 • Complex poles/zeros are present (cid:1) A passive RC implementation is not possible (a regenerative loop is need to have complex poles) • Possible Active-RC implementations (cid:1) Single-Opamp Biquad (cid:1) Sallen&Key Biquadratic cell (cid:1) Rauch Biquadratic cell (cid:1) Multi-Opamp Biquad (cid:1) Kerwin-Huelsman-Newcomb (KHN) Biquadratic cell (cid:1) Tow-Thomas Biquadratic cell A. Baschirotto, “Analog Filters for Telecommunications” 90 Single-Opamp Biquad Sallen&Key Biquadratic cell V Z `(cid:1)Z ` o 1 2 H(s) = = V (Z +Z +Z `)(cid:1)Z `+Z (cid:1)Z i 1 2 2 1 1 2 • The opamp is in a buffer configuration • The opamp output swing is present at the opamp input nodes (cid:1) The input stage may be critical A. Baschirotto, “Analog Filters for Telecommunications” 91 Single-Opamp Biquad Sallen&Key Biquadratic cell • Low-pass frequency response Z1 = Z2 = R C1 1 Z '= 1 s C 1 R R vi 1 C2 vo Z '= 2 s C 2 1 H(s) = 2 2 1+ 2(cid:1)R(cid:1)C (cid:1)s+R (cid:1)C (cid:1)C (cid:1)s 2 1 2 1 1 C (cid:1) = Q= (cid:1) 1 o C (cid:2)C (cid:2)R 2 C 1 2 2 2 (cid:2)Q 1 C = C = 1 2 R(cid:2)(cid:1) 2 (cid:2)Q(cid:2)R(cid:2)(cid:1) o o • In-band maximally-flat frequency response for (Q= 2 2) 1 1 C1 = 2·C2 f = (cid:2) p 2(cid:2)(cid:1) 2 (cid:2)R(cid:2)C A. Baschirotto, “Analog Filters for Telecommunications” 92 Single-Opamp Biquad Sallen&Key biquad • Noise performance C1 R R vi C2 vo 2 2 V = 2(cid:1)4(cid:1)k(cid:1)T (cid:1)R+V n_out n_opamp • Linearity performance (cid:1) Good linearity for closed loop configuration (cid:1) For out-of-band signal a 2·R-C prefilter increases out-of-band linearity 2 A. Baschirotto, “Analog Filters for Telecommunications” 93 Single-Opamp Biquad Sallen&Key biquad • Parasitic capacitance sensitivity C 1 R R v i v o C C p p C 2 • The transfer function is affected by the parasitic capacitance at the two nodes A. Baschirotto, “Analog Filters for Telecommunications” 94 Single-Opamp Biquad Sallen&Key Biquadratic cell • Lowpass configuration: Design issue C1 (cid:1) In the passband no current flows on the R R resistances (even if they are non vi linear, non harmonic distortion C2 vo results). • Low pass Sallen and Key filter with real op-amp: • A real op-amp used in CMOS monolithic S&K filter is a transconductance op-amp A. Baschirotto, “Analog Filters for Telecommunications” 95
Description: