Analog Circuits and Signal Processing Series Editors Mohammed Ismail Mohamad Sawan For furthervolumes: http://www.springer.com/series/7381 Foad Arfaei Malekzadeh Reza Mahmoudi Arthur H. M. van Roermund • Analog Dithering Techniques for Wireless Transmitters 123 FoadArfaei Malekzadeh Arthur H.M.van Roermund Universityof Waterloo Technische Universiteit Eindhoven 1001-545BelmontAve Postbus 513 Kitchener 5600MBEindhoven ONN2M5G7 Netherlands Canada Reza Mahmoudi Technische Universiteit Eindhoven Postbus 513 5600MBEindhoven Netherlands ISBN 978-1-4614-4216-5 ISBN 978-1-4614-4217-2 (eBook) DOI 10.1007/978-1-4614-4217-2 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012939482 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Dithering Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Problem Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Book Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Dithering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Dithering Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Equivalent Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 High and Low Frequency Dithering. . . . . . . . . . . . . . . . . . . . . 13 2.4 Rotating Vector Representation. . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Fourier Series Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5.1 High Frequency Dithering . . . . . . . . . . . . . . . . . . . . . . 16 2.5.2 Low Frequency Dithering . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Statistical Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 Equivalent Nonlinearity for High Frequency Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6.2 Equivalent Nonlinearity for Low Frequency Dithering. . . 22 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Describing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 Sinusoidal DF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Single Sinusoidal DF. . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2 Two Sinusoidal Input DF. . . . . . . . . . . . . . . . . . . . . . . 30 3.1.3 Multiple Sinusoidal Input DF. . . . . . . . . . . . . . . . . . . . 32 3.1.4 Frequency Translated DF. . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Random Input Describing Function . . . . . . . . . . . . . . . . . . . . . 33 3.2.1 Real Gaussian Input DF. . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 Complex Gaussian DF. . . . . . . . . . . . . . . . . . . . . . . . . 34 v vi Contents 3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 Architectures and Topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 Architecture Level Considerations. . . . . . . . . . . . . . . . . . . . . . 38 4.1.1 Open-Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.2 Closed-Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.4 Common Mode Dither. . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.5 Possible Dithering Locations . . . . . . . . . . . . . . . . . . . . 40 4.1.6 Slope Gain Considerations. . . . . . . . . . . . . . . . . . . . . . 41 4.2 Circuit Topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.1 Voltage Mode and Current Mode Class-D . . . . . . . . . . . 42 4.2.2 Design Aspects of Voltage Mode Class-D . . . . . . . . . . . 43 4.2.3 Design Aspects of the Current Mode Class-D. . . . . . . . . 50 4.3 Dithering Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Linearity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.1 Existing Methods and Shortcomings . . . . . . . . . . . . . . . . . . . . 58 5.2 Signal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.1 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2 Multisine Representation of Signals . . . . . . . . . . . . . . . 59 5.2.3 DFT Method to Extract Multisine. . . . . . . . . . . . . . . . . 61 5.2.4 Statistical Synbook Methods. . . . . . . . . . . . . . . . . . . . . 62 5.3 Proposed Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4 Correlated Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.1 Open Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.4.2 Closed Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.5 Nonlinear Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.5.1 Open Loop Real Gaussian . . . . . . . . . . . . . . . . . . . . . . 67 5.5.2 Open Loop Complex Gaussian. . . . . . . . . . . . . . . . . . . 69 5.5.3 Closed Loop Distortion . . . . . . . . . . . . . . . . . . . . . . . . 71 5.5.4 Nonlinear Metrics Calculation . . . . . . . . . . . . . . . . . . . 72 5.6 Memory Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.6.1 Volterra Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.6.2 Wiener-Hammerstein Models. . . . . . . . . . . . . . . . . . . . 74 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6 Spurious Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1 Existing Analysis Methods and Problems. . . . . . . . . . . . . . . . . 80 6.2 Proposed Optimization Approach . . . . . . . . . . . . . . . . . . . . . . 82 Contents vii 6.3 Optimization Technique for Multi-Sine . . . . . . . . . . . . . . . . . . 83 6.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.2 Common Mode Dithering Topology . . . . . . . . . . . . . . . 85 6.3.3 Harmonic Multi-Tone Dither Effects. . . . . . . . . . . . . . . 86 6.4 Case Studies and Validations . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5 Applications in Linearity-Efficiency Trade-Off. . . . . . . . . . . . . 87 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 High Frequency Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.1 Open Loop VMCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.1.1 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.1.2 Measurement and Validation . . . . . . . . . . . . . . . . . . . . 93 7.2 Self-Oscillating Class-D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.2.1 Topology Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.2.2 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.2.3 Measurement and Validation . . . . . . . . . . . . . . . . . . . . 103 7.2.4 Generic Design Procedure . . . . . . . . . . . . . . . . . . . . . . 105 7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8 Low Frequency Dithering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.1 Open Loop VMCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.1.1 Fine Tuning of the Dithering Frequency . . . . . . . . . . . . 109 8.1.2 Measurement and Validation . . . . . . . . . . . . . . . . . . . . 110 8.2 Open Loop CMCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.2.1 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.2.2 Fine Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 8.2.3 Measurement and Verification . . . . . . . . . . . . . . . . . . . 116 8.3 Generic Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9 Novel Interpretations of Dithering . . . . . . . . . . . . . . . . . . . . . . . . 121 9.1 Dynamic Load Modulation and Dithering. . . . . . . . . . . . . . . . . 121 9.2 Area Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.3 RF-ADC with Dithering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 9.4 Mixer as Dithering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.4.1 Driving State Equations. . . . . . . . . . . . . . . . . . . . . . . . 129 9.4.2 Taking Averages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.4.3 Solution of the Differential Equations . . . . . . . . . . . . . . 131 9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 viii Contents Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Chapter 1 Introduction Poweramplifiers are the mostpowerhungry and perhapsthe most expensive part of the wireless transmitters in the RF chain. The key differentiators among dif- ferentPAsarecost,yield,weight,efficiency,easeofdesign,reliability,ruggedness and high temperature operation. Generally, the most important of these require- ments are linearity and efficiency. Modern communication systems employ high crest factor signals as a result of the urgent need of higher bandwidth efficiency. Achieving mandatory linearity constraints along with competitive efficiency requirements becomes more difficult with increased signal crest factor [1–3]. In the field of PA design, for linear and efficient operation, two distinct trends exist, which are either using an inherently linear PA (with poor efficiency) with supply or load modulation techniques (e.g. envelope tracking) to enhance their efficiency,whileretainingthelinearity(withpre-distortionorCartesianfeedback), or using inherently nonlinear (but power efficient) PAs and try to linearize them. A sub-class of the efficient power amplifiers is known as the class of switched mode PAs (SMPA). These PAs have different classes of operation, while all of them have one thing in common: they move fast between the saturation and off-stateofthedevices,whichmakeseitherthevoltageorthecurrentofthedevice terminalsoftheseamplifiersnegligible,hencedecreasingthepowerloss,andthus increasing the efficiency. Among them, operation classes D, E, F, F-1 etc. can be named. Another similarity among them is that they all suffer from very poor linearity, i.e. because they switch between cut-off and saturation levels, they cannotreflecttherealenvelopevariationsoftheinputsignalontheoutputsignal, which is usually switching between two constant levels. There are a couple of techniques, for linearization of SMPAs; among them are EER and out-phasing. F.ArfaeiMalekzadehetal.,AnalogDitheringTechniquesforWirelessTransmitters, 1 AnalogCircuitsandSignalProcessing,DOI:10.1007/978-1-4614-4217-2_1, (cid:2)SpringerScience+BusinessMediaNewYork2013 2 1 Introduction 1.1 Motivation In order to obtain the required linearity-efficiency compromise with switched modepoweramplifiers,varioustechniquesarebeingemployedincurrentwireless systems.Amongthemarepolarmodulation[4,5]andout-phasingtechniques[6]. Thesehavebeendiscussedindetail.Theyusetherealenvelopesignaltomodulate aswitched-modeamplifieroutput,orconvertthemodulatedsignaltoasummation of two constant-envelope signals to be processed by switched mode PAs. The majordrawbackofallthosetechniquesisthecomplicatedsignalprocessingthatis needed for wave shaping and the poor efficiency of the tracking amplifier, which affects the overall linearization efficiency. Besidesthesetechniques,therearealsotime-domainencodingtechniques,like sigma-delta modulators (SDM) or pulse-width modulators (PWM). They show good linearity-efficiency performance. In those techniques, the amplitude and phase information of a digitally modulated message signal is encoded in limited number of quantized levels of an output pulse train (e.g. zero and one for binary encoding) and their zero crossings. This makes it possible to use an efficient switched mode power amplifier like class D. The major drawback is a relatively high clocking (or sampling) frequency, which in turn will degrade the power efficiency due to more reactive power loss. There is also a class of signal processing techniques which use an external signal to change the linearity behavior of hard nonlinearities, pruned as dithering techniques.Thegenericnameof‘dithering’isusedforthisphenomenon,whichis explained in the following section. 1.2 Dithering Concept The term ‘dither’ was published in books on analog computation and hydraulic controlledgunsshortlyafterthewar[7,8].In[9],itisstatedthatoneoftheearliest applications of dither came in World War II. Airplane bombers used mechanical computers to perform navigation and bomb trajectory calculations. These mechanical computers performed more accurately when flying on board the air- craft, and less well on ground. Engineers realized that the vibration from the aircraft reduced the error from sticky moving parts. Instead of moving in short steps, they moved more continuously. Small vibrating motors were built into the mechanical computers, and their vibration was called dither from the Middle English verb ‘‘didderen’’ meaning ‘‘to tremble’’ [9]. Dither successfully makes a digitization system a little more analog in the good sense of the word. The concept of dithering to reduce quantization patterns was first applied by Lawrence G. Roberts in his 1961 MIT master’s book [10] though he did not use the term dither. By 1964 dither was being used in the modern sense, described in [11]. 1.2 DitheringConcept 3 Fig.1.1 a The problem of dithering, as the dither signal dðtÞ; combined with a generic input signal rgðtÞ is applied to an single input single output transfer characteristic y¼fNLðxÞ. b The equivalent problem formulation, and c The relationship between the smoothed equivalent functionandoriginalfunction The concept of dithering as a linearization technique is exploited in many applications. As an example, dithering has applications for linearization and for quantization noise reduction. Many analog-to-digital converter applications requirelowdistortionforaverywidedynamicrangeofsignals.Unfortunately,the distortion caused by digitizing an analog signal increases as the signal amplitude decreases,andisespeciallyseverewhenthesignalamplitudeisofthesameorder asthequantizingstep.Indigitalaudioapplications,forexample,low-levelsignals occur often, sometimes alone and sometimes in the presence of larger signals. If these low-level signals are severely distorted by the quantization process, the usefulnessofthesystemisgreatlydiminished.Itis,infact,possibletoreducethe distortion,andalsotoimprovetheresolutionbelowoneLSB(leastsignificantbit), by adding noise (or dither) to the signal of interest. For ideal converters, the optimum dither is white noise at a voltage level of about 1/3 LSB rms. The addition of dither effectively smoothes the ADC transfer function, which normallyhasastaircase-likeappearance,butitcomeswithaslightreductionofthe signal-to-noise ratio [11, 12]. 1.3 Problem Statement The topic of the current book lies in the realm of linearized SMPA design. Assuming that we have a static nonlinear input output transfer function, the problem is illustrated in Fig. 1.1. We have a signal that is called r ðtÞ which is a g band-limited(eitheralowpassorband-passsignal),andwehaveastaticnonlinear input–output characteristic y¼f ðxÞ; which is a single input single output NL mappingfunctiontodescribethenonlinearblock.Theblockresemblesmanytypes ofcommon switched mode poweramplifiers inwhich the switching device in the
Description: