ebook img

Analog Circuit Design for Process Variation-Resilient Systems-on-a-Chip PDF

183 Pages·2012·5.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Analog Circuit Design for Process Variation-Resilient Systems-on-a-Chip

Analog Circuit Design for Process Variation-Resilient Systems-on-a-Chip Marvin Onabajo Jose Silva-Martinez • Analog Circuit Design for Process Variation-Resilient Systems-on-a-Chip 123 Marvin Onabajo JoseSilva-Martinez Department of Electricaland Department of Electricaland Computer Engineering Computer Engineering 409Dana Research Center Texas A&MUniversity Northeastern University 111A ZachryEngineeringBuilding 360HuntingtonAvenue College Station Boston,MA 02115 TX 77843-3128 USA USA ISBN 978-1-4614-2295-2 e-ISBN978-1-4614-2296-9 DOI 10.1007/978-1-4614-2296-9 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012932403 (cid:2)SpringerScience+BusinessMediaNewYork2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Continued improvements of transceiver systems-on-a-chip play a key role in the advancementofmobiletelecommunicationproductsaswellaswirelesssystemsin medical and remote sensing applications. This book addresses the problems of escalating CMOS process variability and system complexity that diminish the reliability and testability of integrated systems, especially relating to the analog and mixed-signal blocks. Chapter 1 introduces the technical demands and incen- tivestoadoptvariation-awaredesignapproaches.Thedescribeddesigntechniques andcircuit-levelattributesarealignedwithcurrentbuilt-intestingandself-calibration trends for integrated transceivers, which are explained in Chap. 2. The main attention in this book is on various recent works in which the performances of analog and mixed-signal blocks were enhanced with digitally adjustable elements as well as with automatic analog tuning circuits. To convey the concepts, several casestudiesarepresentedthatspantheoreticalaspectsandexperimentalresultsfor variation-awaredesignapproaches related toreceiverfront-end circuits,baseband filter linearization, and data conversion. The use of digitally controllable elements to compensate for variations is exemplified with two circuits. First, a distortion cancellation method for opera- tional transconductance amplifiers that enables a third-order intermodulation (IM3) improvement of up to 22 dB is presented in Chap. 3. A transconductance- capacitor lowpass filter with linearized amplifiers is discussed, which was fabri- cated in a 0.13 lm CMOS process with 1.2 V supply. This filter has a measured IM3 below -70 dB (with 0.2 V peak-to-peak input signal swing) and 54.5 dB dynamicrangeoverits195 MHzbandwidth.Thesecondexamplecircuitisa3-bit two-step quantizer with adjustable reference levels, which is the focal point of Chap.4.Thisquantizerwasdesignedandfabricatedin0.18 lmCMOStechnology as part of a continuous-time RD analog-to-digital converter system. With 5 mV resolutionat a 400 MHz sampling frequency, the quantizer’s power dissipation is 24 mWanditsdieareais0.4 mm2. AnalternativetoelectricalpowerdetectorsisexplainedinChap.5byoutlining a strategy for built-in testing of analog circuits with on-chip temperature sensors. Comparisons of an amplifier’s measurement results at 1 GHz with the measured v vi Preface DC voltage output of an on-chip temperature sensor show that the amplifier’s powerdissipationcanbemonitoredandits1 dBcompressionpointcanbeestimated withlessthan1 dBerror.Thesensorhasatunablesensitivityupto200 mV/mW,a power detection range measured up to 16 mW, and it occupies a die area of 0.012 mm2instandard0.18 lmCMOStechnology. InChap.6,ananalogcalibrationtechniqueisdiscussedtolessenthemismatch betweentransistorsinthedifferentialhigh-frequencysignalpathofanalogCMOS circuits. The described methodology involves auxiliary transistors that sense the existing mismatch as part of a feedback loop for error minimization. It was assessed by performing statistical Monte Carlo simulations of a differential amplifier and a double-balanced mixer designed in CMOS technologies. Finally, Chap. 7 summarizes the results and conclusions for this calibration case study as well as the other specific design examples in the book. Marvin Onabajo Jose Silva-Martinez Acknowledgments We would like to extend our sincere appreciation to our colleagues listed below, who made this book possible through collaborations on the described research projects. Marvin Onabajo, Jose Silva-Martinez Attenuation-predistortion linearization of operational transconductance ampli- fiers: Mohamed Mobarak and Edgar Sánchez-Sinencio Continuous-time lowpass DR modulator with time-domain quantization and feedback: Cho-YingLu,VenkataGadde,Yung-ChungLo,Hsien-PuChen,andVijayaramalingam Periasamy ObservationofRFcircuitpowerandlinearitycharacteristicswithon-chiptemperature sensors: JosepAltet,EduardoAldrete-Vidrio,DiegoMateo,andDidacGómez vii Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Book Scope and Organization. . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Linearization Scheme for Transconductance Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Process Variation-Aware Quantization. . . . . . . . . . . . . . 5 1.2.3 Non-Invasive On-Chip Measurement of Thermal Gradients and RF Power . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Analog Calibration for Transistor Mismatch Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Process Variation Challenges and Solutions Approaches . . . . . . . . 9 2.1 Current Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 The Impact of Rising Process Variations. . . . . . . . . . . . 9 2.1.2 Circuit and System Design Tendencies . . . . . . . . . . . . . 11 2.2 System Perspective on Transceiver Built-In Testing and Self-Calibration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Digital Correction and Calibration . . . . . . . . . . . . . . . . 14 2.2.2 Analog Measurements and Tuning . . . . . . . . . . . . . . . . 15 2.2.3 Loopback Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.4 Digital Performance Monitoring with Analog Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.5 Combined Digital Monitoring, Analog Measurements, and Tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.6 High-Volume Manufacturing Testing. . . . . . . . . . . . . . . 21 2.2.7 Analog Tuning ‘‘Knobs’’ . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.8 Variation-Aware Design of Digital Circuits . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ix x Contents 3 High-Linearity Transconductance Amplifiers with Digital Correction Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Attenuation-Predistortion Linearization Methodology. . . . . . . . . 33 3.2.1 Single-Ended Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.2 Fully-Differential Circuits . . . . . . . . . . . . . . . . . . . . . . 35 3.2.3 Scaling of Attenuation Ratios. . . . . . . . . . . . . . . . . . . . 35 3.2.4 Volterra Series Analysis. . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Circuit-Level Design Considerations . . . . . . . . . . . . . . . . . . . . 38 3.3.1 Fully-Differential OTA with Floating-Gate Transistors. . . 38 3.3.2 Proof-of-Concept Filter Realization and Application Considerations. . . . . . . . . . . . . . . . . . . 40 3.4 Compensation for PVT Variations and High-Frequency Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 Prototype Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 Standalone OTA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.2 Second-Order Lowpass Filter. . . . . . . . . . . . . . . . . . . . 46 3.6 Summarizing Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Multi-Bit Quantizer Design for Continuous-Time Sigma-Delta Modulators with Reduced Device Matching Requirements. . . . . . . 57 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1.1 State of the Art Continuous-Time RD ADCs . . . . . . . . . 58 4.1.2 Quantizer Design Trends . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.3 Quantizer Design Considerations for the RD Modulator Architecture. . . . . . . . . . . . . . . . . . . 62 4.2 3-Bit Two-Step Current-Mode Quantizer Architecture . . . . . . . . 66 4.2.1 Quantizer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.2 Process Variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.3 Simulation Results and Technology Scaling. . . . . . . . . . 75 4.2.4 ADC Chip Measurements with Embedded Quantizer. . . . 79 4.3 Summarizing Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 An On-Chip Temperature Sensor for the Measurement of RF Power Dissipation and Thermal Gradients . . . . . . . . . . . . . 87 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Temperature Sensing Approach. . . . . . . . . . . . . . . . . . . . . . . . 89 5.2.1 Integration with Transceiver Calibration Techniques. . . . 89 5.2.2 Modeling of the Thermal Coupling. . . . . . . . . . . . . . . . 90 5.2.3 Electro-Thermal Analysis Example: Low-Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 93 Contents xi 5.3 CMOS Differential Temperature Sensor Design . . . . . . . . . . . . 96 5.3.1 Previous Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.2 Design of the Sensor Circuit Topology . . . . . . . . . . . . . 96 5.3.3 Adjustment of the Sensor’s Sensitivity . . . . . . . . . . . . . 99 5.3.4 Sensor Design Optimization Procedure . . . . . . . . . . . . . 101 5.4 Measurement Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.4.1 Temperature Sensor Characterization. . . . . . . . . . . . . . . 104 5.4.2 RF Testing with the On-Chip DC Temperature Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.5 Summarizing Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6 Mismatch Reduction for Transistors in High-Frequency Differential Analog Signal Paths. . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2 A Mismatch Reduction Technique for Differential Pair Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.1 Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3 Second-Order Nonlinearity Enhancement for Double-Balanced Mixers. . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.2 Alternative Mixer Calibration. . . . . . . . . . . . . . . . . . . . 124 6.3.3 Double-Balanced Mixer Design . . . . . . . . . . . . . . . . . . 131 6.3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.4 Summarizing Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7 Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.1 Overall Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.2 Discussed Projects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Appendix A: OTA Linearization—Volterra Series Analysis . . . . . . . . 155 Appendix B: OTA Linearization—Advanced Phase Compensation . . . 159 Appendix C: OTA Linearization Without Power Budget Increase. . . . 165 Appendix D: Temperature Sensing Analysis—Relationship Between Circuit Nonlinearities and DC Temperature. . . . . . . . . . 167 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Description:
This book describes several techniques to address variation-related design challenges for analog blocks in mixed-signal systems-on-chip. The methods presented are results from recent research works involving receiver front-end circuits, baseband filter linearization, and data conversion. These circu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.