ebook img

Análise de regressão : uma introdução à econometria PDF

405 Pages·2017·7.63 MB·Portuguese
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Análise de regressão : uma introdução à econometria

Universidade de São Paulo Biblioteca Digital da Produção Intelectual - BDPI Departamento de Economia, Administração e Sociologia - Livros e Capítulos de Livros - ESALQ/LES ESALQ/LES 2016 Análise de regressão : uma introdução à econometria http://www.producao.usp.br/handle/BDPI/48616 Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo RODOLFO HOFFMANN ANÁLISE DE REGRESSÃO Uma Introdução à Econometria Portal de Livros Abertos da USP 2016 RODOLFO HOFFMANN ANÁLISE DE REGRESSÃO Uma Introdução à Econometria Esta é uma versão ligeiramente modificada do livro de mesmo título (quarta edição) publicado pela Editora HUCITEC em 2006, com edição esgotada em 2014. Piracicaba Edição do Autor 2016 Dados Internacionais de Catalogação na Publicação DIVISÃO DE BIBLIOTECA – DIBD/ESALQ/USP Hoffmann, Rodolfo Análise de regressão: uma introdução à econometria [recurso eletrônico] / Rodolfo Hoffmann. - - Piracicaba: ESALQ/USP, 2015. 393 p. : il. ISBN: 978-85-921057-0-9 1. Análise de regressão 2. Econometria I.Título CDD 330.18 H711a Autorizo a reprodução parcial ou total desta obra, para fins acadêmicos, desde que citada a fonte. SUMÁRIO 1. INTRODUÇÃO E CONCEITOS ESTATÍSTICOS BÁSICOS ..................................................... 1 1.1. Econometria e análise de regressão ........................................................................... 1 1.2. Modelo matemático e modelo estatístico .................................................................. 1 1.3. Variável aleatória ....................................................................................................... 4 1.4. Esperança matemática ............................................................................................... 5 1.5. Variância e covariância ............................................................................................. 5 1.6. Estimador não-tendencioso ...................................................................................... 10 1.7. Estimador de variância mínima ............................................................................... 15 1.8. Estimadores de mínimos quadrados ........................................................................ 19 1.9. Estimadores de máxima verossimilhança ................................................................ 21 1.10. Propriedades assintóticas dos estimadores ............................................................ 24 1.11. O limite inferior de Cramér-Rao e as propriedades assintóticas dos estimadores de máxima verossimilhança .............................................................. 32 1.12. Teste de hipóteses .................................................................................................. 34 Exercícios ....................................................................................................................... 40 2. REGRESSÃO LINEAR SIMPLES ...................................................................................... 44 2.1. modelo estatístico de uma regressão linear simples ............................................. 44 2.2. Estimativa dos parâmetros ...................................................................................... 47 2.3. O modelo simplificado e um exemplo numérico .................................................. 50 2.4. Demonstração de que os estimadores de mínimos quadrados são estimadores lineares não-tendenciosos .................................................................. 53 2.5. Variâncias e covariâncias das estimativas dos parâmetros .................................... 55 2.6. Demonstração de que b é um estimador linear não-tendencioso de variância mínima ................................................................................................... 58 2.7. Decomposição da soma de quadrados total ........................................................... 61 2.8. Esperanças das somas de quadrados ...................................................................... 63 2.9. Análise de variância da regressão .......................................................................... 65 2.10. O coeficiente de determinação corrigido para graus de liberdade e o coeficiente de variação .......................................................................................... 68 2.11. Estimativas das variâncias das estimativas dos parâmetros, teste de hipóteses a respeito dos parâmetros e respectivos intervalos de confiança ................................................................................................................ 69 ˆ 2.12. Variância de Y e intervalo de previsão ................................................................. 72 i 2.13. O problema da especificação e as funções que se tornam lineares por anamorfose ............................................................................................................. 77 2.14. Estimativa de máxima verossimilhança ................................................................ 80 2.15. Análise de regressão quando X é uma variável aleatória ....................................... 81 Exercícios ....................................................................................................................... 82 3. CORRELAÇÃO ............................................................................................................ 103 3.1. O coeficiente de correlação simples para uma amostra ....................................... 103 3.2. Aplicação da análise de regressão a uma população com distribuição normal bidimensional .......................................................................................... 110 Exercícios ..................................................................................................................... 112 4. REGRESSÃO LINEAR MÚLTIPLA .................................................................................. 120 4.1. O modelo estatístico de uma regressão linear múltipla .......................................... 120 4.2. Estimativas dos parâmetros de acordo com o método dos mínimos quadrados ............................................................................................................. 121 4.3. Variâncias e covariâncias das estimativas dos parâmetros ..................................... 124 4.4. Variância de uma combinação linear das estimativas dos parâmetros ................... 125 4.5. Análise de variância da regressão linear múltipla .................................................. 126 4.6. Demonstração de que b é um estimador linear não-tendencioso de variância mínima ................................................................................................................. 130 4.7. O uso das variáveis centradas ................................................................................. 132 4.8. Exemplo de uma regressão linear múltipla com duas variáveis explanatórias ........................................................................................................ 135 4.9. Previsão e teste de hipóteses a respeito do valor de combinações lineares dos parâmetros ............................................................................................................ 139 4.10. Interpretação dos coeficientes de regressão de uma regressão linear múltipla com duas variáveis explanatórias .......................................................... 143 4.11. Os coeficientes de correlação parcial ................................................................... 146 4.12. Intervalos de confiança e regiões de confiança para os parâmetros..................... 154 4.13. Exemplo de regressão linear múltipla com três variáveis explanatórias ............. 162 4.14. Problemas de especificação.................................................................................. 168 4.15. Transformação das variáveis para obter a matriz de correlações simples .......... 171 4.16. Regressões que se tornam lineares por anamorfose ............................................ 173 4.17. Ortogonalidade e multicolinearidade na matriz X .............................................. 173 4.18. Teste de hipóteses no modelo linear ................................................................... 178 4.19. Interpretação geométrica da análise de regressão linear de acordo com o método de mínimos quadrados ........................................................................... 181 Exercícios ..................................................................................................................... 194 5. USO DE VARIÁVEIS BINÁRIAS .................................................................................. 219 5.1. Níveis de medida ................................................................................................. 219 5.2. Uso de variáveis binárias para distinguir as categorias de uma variável nominal ................................................................................................................. 220 5.3. Uso de variáveis binárias para ajustar poligonais ............................................... 226 5.4. Mudança estrutural .............................................................................................. 230 5.5. Análise de variância de dados com vários tratamentos e o teste para "falta de ajustamento" ................................................................................................... 236 Exercícios ..................................................................................................................... 240 6. HETEROCEDASTICIA .................................................................................................. 254 6.1. O caso de uma regressão linear simples em que o desvio padrão do erro é proporcional a X .................................................................................................. 254 6.2. O método dos mínimos quadrados ponderados .................................................. 255 6.3. Conseqüências do uso de estimadores de mínimos quadrados ordinários quando existe heterocedasticia ............................................................................ 257 6.4. Testes para a homocedasticia e obtenção de estimativas dos parâmetros quando a matriz V é desconhecida ...................................................................... 261 6.5. O estimador de White para variância quando há heterocedasticia ...................... 267 Exercícios ..................................................................................................................... 268 7. MÍNIMOS QUADRADOS GENERALIZADOS E AUTOCORRELAÇÃO NOS RESÍDUOS ........ 275 7.1. Mínimos quadrados generalizados ...................................................................... 275 7.2. Autocorrelação nos resíduos ............................................................................... 278 7.3. O teste de Durbin-Watson ................................................................................... 283 Exercícios ..................................................................................................................... 285 8. VARIÁVEIS INSTRUMENTAIS E ERROS NAS VARIÁVEIS EXPLANATÓRIAS ................... 291 8.1. Introdução ........................................................................................................... 291 8.2. A consistência dos estimadores de mínimos quadrados ordinários .................... 291 8.3. A inconsistência dos estimadores de mínimos quadrados quando os erros estão assintoticamente correlacionados com uma ou mais das variáveis explanatórias ....................................................................................................... 294 8.4. O uso de variáveis instrumentais para obter estimativas consistentes ................ 295 8.5. Regressão linear simples com as duas variáveis sujeitas a erros de medida ....... 298 8.6. O método da variável instrumental ..................................................................... 301 8.7. Outro método ...................................................................................................... 303 Exercícios ...................................................................................................................... 305 9. EQUAÇÕES SIMULTÂNEAS ......................................................................................... 308 9.1. Introdução ........................................................................................................... 308 9.2. Um exemplo numérico ........................................................................................ 311 9.3. O estimador de variável instrumental ................................................................. 312 9.4. Mínimos quadrados indiretos .............................................................................. 312 9.5. Mínimos quadrados em dois estágios ................................................................. 315 9.6. Variáveis conjuntamente determinadas e variáveis predeterminadas ................. 317 9.7. Notação geral ...................................................................................................... 318 9.8. Variáveis instrumentais ....................................................................................... 319 9.9. Identificação ........................................................................................................ 321 9.10. Estimação dos parâmetros em caso de superidentificação .................................. 327 9.11. Outras maneiras de obter o estimador de mínimos quadrados em dois estágios ................................................................................................................ 328 9.12. Um exemplo numérico ........................................................................................ 329 9.13. Um segundo exemplo numérico ......................................................................... 333 9.14. Terceiro exemplo ................................................................................................ 334 9.15. Uma visão global ................................................................................................. 340 Exercícios ..................................................................................................................... 342 10. SÉRIES TEMPORAIS .................................................................................................. 352 10.1. Processos estocásticos ......................................................................................... 352 10.2. Ruído branco ....................................................................................................... 354 10.3. Modelos de regressão .......................................................................................... 355 10.4. Modelos de decomposição ................................................................................... 355 10.5. Modelos ARMA .................................................................................................. 355 10.6. Análise do AR(1) ................................................................................................. 357 10.7. O passeio aleatório com deslocamento ................................................................ 358 10.8. Transformando modelos AR em modelos MA e vice-versa ............................... 362 10.9. Raiz unitária e modelos ARIMA ......................................................................... 364 10.10.Função de autocorrelação ................................................................................... 365 10.11. Os testes de Dickey-Fuller ................................................................................. 367 10.12. Modelo de correção de erro e co-integração ..................................................... 368 Exercícios ..................................................................................................................... 373 APÊNDICE ....................................................................................................................... 376 BIBLIOGRAFIA ............................................................................................................... 383 ÍNDICE ANALÍTICO.......................................................................................................... 387

Description:
RODOLFO HOFFMANN. ANÁLISE DE REGRESSÃO. Uma Introdução à Econometria. Portal de Livros Abertos da USP. 2016
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.