Utrecht Studies in Earth Sciences No. 113 Anaerobic oxidation of methane and its impact on iron and phosphorus cycling in marine sediments Matthias Egger Utrecht 2016 ISBN 978-90-393-6614-1 ISSN 2211-4335 USES No. 113 Cover: Sunset over the Stockholm archipelago, Baltic Sea (June 2016), photo by Silke Severmann Copyright © 2016 Matthias Egger Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt door middel van druk, fotokopie of op welke andere wijze dan ook zonder voorafgaande schriftelijke toestemming van de uitgevers. All rights reserved. No part of this publication may be reproduced in any form, by print or photo print, microfilm or any other means, without written permission by the publishers. Printed in the Netherlands by CPI - Koninklijke Wöhrmann, Zutphen Anaerobic oxidation of methane and its impact on iron and phosphorus cycling in marine sediments Anaërobe oxidatie van methaan en de gevolgen voor de ijzer en fosfor kringlopen in mariene sedimenten (met een samenvatting in het Nederlands) Anaerobe Methanoxidation und deren Einfluss auf den Eisen- und Phosphorkreislauf in marinen Sedimenten (mit einer Zusammenfassung in deutscher Sprache) Proefschrift te verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G. J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 9 september 2016 des middags te 2.30 uur door Matthias Jürg Egger geboren op 1 januari 1987 te St. Gallen, Zwitserland Promotor: Prof. dr. ir. Caroline P. Slomp Members of the dissertation committee: Prof. dr. Jack J. Middelburg Utrecht University The Netherlands Prof. dr. Gert J. de Lange Utrecht University The Netherlands Prof. dr. Klaus Wallmann GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel Germany Prof. dr. Bo Thamdrup University of Southern Denmark Denmark PD. dr. Sabine Kasten Alfred-Wegener Institut Germany Für meine Eltern, Doubt is not a pleasant condition, but certainty is absurd. - Voltaire Contents Abstract 9 Chapter 1 General introduction and thesis outline 11 Chapter 2 Iron-mediated anaerobic oxidation of methane in brackish coastal 21 sediments Matthias Egger, Olivia Rasigraf, Célia J. Sapart, Tom Jilbert, Mike S. M. Jetten, Thomas Röckmann, Carina van der Veen, Narcisa Bândă, Boran Kartal, Katharina F. Ettwig and Caroline P. Slomp Environ. Sci. Technol. (2015); doi:10.1021/es503663z Chapter 3 Iron-dependent anaerobic oxidation of methane in coastal surface 37 sediments: potential controls and impact J urjen Rooze, Matthias Egger, Iana Tsandev and Caroline P. Slomp Limnol. Oceanogr. (2016); doi: 10.1002/lno.10275 Chapter 4 Vivianite is a major sink for phosphorus in methanogenic coastal surface 59 sediments Matthias Egger, Tom Jilbert, Thilo Behrends, Camille Rivard and Caroline P. Slomp Geochim. Cosmochim. Acta (2015); doi: 10.1016/j.gca.2015.09.012 Chapter 5 Anaerobic oxidation of methane alters sediment records of sulfur, iron and 91 phosphorus in the Black Sea Matthias Egger, Peter Kraal, Tom Jilbert, Fatimah Sulu-Gambari, Célia J. Sapart, Thomas Röckmann and Caroline P. Slomp Biogeosciences Discuss. (2016); doi: 10.5194/bg-2016-64 (revised for Biogeosciences) Chapter 6 Iron oxide reduction in deep Baltic Sea sediments: the potential role of 127 anaerobic oxidation of methane Matthias Egger, Mathilde Hagens, Célia J. Sapart, Nikki Dijkstra, Niels A. G. M. van Helmond, José Mogollón, Nils Risgaard-Petersen, Sabine Kasten, Natascha Riedinger, Michael E. Böttcher, Carina van der Veen, Thomas Röckmann, Bo Barker Jørgensen and Caroline P. Slomp (to be submitted) Chapter 7 Rapid sediment accumulation results in high methane effluxes from coastal 153 sediments Matthias Egger, Wytze Lenstra, Dirk Jong, Filip J. R. Meysman, Célia J. Sapart, Carina van der Veen, Thomas Röckmann, Santiago Gonzalez and Caroline P. Slomp PlosONE (accepted in revised form) References 177 Samenvatting (Summary in Dutch) 193 Zusammenfassung (Summary in German) 197 Acknowledgments (Danksagung) 201 Curriculum Vitae 204 List of publications 205 Abstract Methane (CH) represents one of the key compounds in the global carbon (C) cycle. A major 4 part of the CH in the Earth system is produced in marine sediments by methanogenesis, the 4 final step in the gradual fermentation of organic matter deposited on the seafloor. Once emitted to the atmosphere, CH acts as a powerful greenhouse gas. Despite high rates of methanogenesis 4 in continental shelf and slope environments, the ocean today contributes only a relatively small amount of this potent greenhouse gas to the global atmospheric budget. The low atmospheric CH 4 efflux from the ocean is largely due to the effective biological removal of dissolved CH through 4 anaerobic oxidation with sulfate (SO2-) in marine sediments. This removal of pore water CH 4 4 occurs within a distinct sulfate/methane transition zone (SMTZ), preventing the large amounts of CH generated in marine sediments from escaping to the water column. The relevant pathways and 4 the environmental factors that control the rates of CH oxidation in marine sediments are, however, 4 still incompletely understood. In some settings, for example, pore water CH is found throughout 4 the SO2- bearing zone, pointing towards an inefficient CH oxidation by SO2- in certain marine 4 4 4 environments. Other more recent findings further indicate that nitrate and nitrite, as well as metal oxides (e.g. manganese and iron (Fe) oxides) can enhance the conversion of CH to CO in the 4 2 absence of oxygen. Sulfate may thus not be the only electron acceptor used by microorganisms to oxidize CH in anoxic sediments, but knowledge about the significance of additional electron 4 acceptors for the global CH cycle is still lacking. In addition, little is known about how CH 4 4 oxidation may impact the marine cycling of Fe and phosphorus (P), both key nutrients for oceanic phytoplankton. This thesis aims to refine our understanding of the potential impacts and controls of CH 4 oxidation in marine sediments. In particular, it discusses how anaerobic oxidation of CH affects 4 the sequestration and sedimentary records of Fe and P, using a wide range of geochemical tools. The results presented here also demonstrate that climate change and anthropogenic nutrient loading may alter the position and efficiency of the CH oxidation barrier in coastal sediments, which in 4 turn could lead to increased atmospheric CH emissions from the coastal ocean. 4 9 10 Baltic Sea Photo: Silke Severmann
Description: